مدلسازی امواج هدایت شده در یک ورق با عرض بی نهایت با استفاده از روش نیمه تحلیلی المان محدود نوع پی

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری، گروه مکانیک، دانشکده مهندسی مکانیک، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد، آزمایشگاه سازه های هوشمند و کامپوزیتی گروه مکانیک، دانشکده مهندسی ، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

یکی از مسائل حائز اهمیت که همواره در زمینه مدل سازی و تحلیل مسائل مهندسی مورد توجه ویژه قرار گرفته است، تعادل میان دقت و هزینه محاسباتی روش بکار گرفته شده می باشد. لذا، مسئله مدل سازی انتشار موج در سازه ها و ارائه منحنی های پراکنش مربوطه، که در زمینه پایش سلامت سازه و شناسایی خواص مواد به کار گرفته می شود، نیز از این اصل مستثنی نمی باشد. اهمیت حفظ این تعادل به ویژه در مواردی که نیاز به تکرار در مدلسازی وجود دارد نمود پیدا می کند. در مقاله حاضر سعی بر آن شده است که با بکارگیری توابع شکل سلسله مراتبی در روش نیمه تحلیلی المان محدود و ایجاد روشی همانند روش المان محدود نوع پی، دقت و هزینه محاسباتی این روش را افزایش داد. علاوه بر روش ارائه شده تاثیر درجات آزادی مدلسازی در محاسبه فرکانس قطع، و به طبع آن دقت منحنی های پراکنش و افزایش خطای مدلسازی ناشی از آن پرداخته می شود.

کلیدواژه‌ها

موضوعات


[1] Kazys RJ, Sestoke J, Zukauskas E (2022) Numerical Investigation of Excitation of Various Lamb Waves Modes in Thin Plastic Films. Appl Sci 12(2):849.
[2] صمیمیان تهرانی ش.، صفرپور پ.، بابایی م.، کیارسی ف. (1400)، "شناسایی ترک‌های یک و چندگانه در پوسته استوانه‌ای با استفاده از آنالیز مودال و تبدیل موجک" مجله مکانیک سازه‌ها و شاره‌ها، 12(2)، صفحه 13-28
[3] Willberg C, Duczek S, Vivar-Perez JM, Ahmad ZAB (2015) Simulation methods for guided wave-based structural health monitoring: a review. Appl Mech Rev 67(1): 010803.
[4] Astaneh AV, Guddati MN (2017) Dispersion analysis of composite acousto-elastic waveguides. Compos B Eng 130: 200–216.
[5] Joseph R, Li L, Haider MF, Giurgiutiu V (2019) Hybrid SAFE-GMM approach for predictive modeling of guided wave propagation in layered media. Eng Struct 193:194–206.
[6] Su Z, Ye L, Lu Y. (2006) Guided Lamb waves for identification of damage in composite structures: a review. J Sound Vib 295(3):753–780.
[7] Mitra M, Gopalakrishnan S (2016) Guided wave based structural health monitoring: a review. Smart Mater Struct 25(5):05300.
[8] Bathe KJ (2006) Finite element procedures. 1st edn.  Prentice Hall, United States of America.
[9] Gopalakrishnan S (2008) Spectral finite element method, wave propagation, diagnostics and control in anisotropic and inhomogeneous structures.  1st edn. Springer, London.
[10] Gravenkamp H, Birk C, Song C (2015) Simulation of elastic guided waves interacting with defects in arbitrarily long structures using the scaled boundary finite element method. J Comput Phys 295:438–455.
[11] Chang Y, Cao W, Li N, Liu Z, Li F, Zeng L, Wei Q, Liu X (2023) Study on Propagation Characteristics of Guided Waves in Plate Structure Via Semi-Analytical Wavelet Finite Element Method. IEEE Trans Instrum Meas.
[12] Aalami B (1973) Waves in prismatic guides of arbitrary cross section. J Appl Mech 40(4):1067-1072
[13] Gopalakrishnan S (2008) Spectral finite element method, wave propagation, diagnostics and control in anisotropic and inhomogeneous structures.  1st edn. Springer, London.
[14] Zienkiewicz OC (1971) The finite element method in engineering science. McGraw-Hill, London, New York.
[15] Gavric L (1995) Computation of propagative waves in free rail using a finite element technique. J Sound Vib 185(3):531–543.  
[16] Hayashi T, Song WJ, Rose JL (2003) Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41(3):175–183.
[17] Damljanovic V,Weaver RL (2004) Forced response of a cylindrical waveguide with simulation of the wavenumber extraction problem. J Acoust Soc Am 115(4):1582-91.
[18] Gravenkamp H, Birk C, Song C (2015) Simulation of elastic guided waves interacting with defects in arbitrarily long structures using the scaled boundary finite element method. J Comput Phys295:438–455.
[19] Bartoli I, Marzani A, di Scalea FL, Viola E (2006) Modeling wave propagation in damped waveguides of arbitrary cross-section. J Sound Vib 295(3):685–707.
[20] Hayashi T, Tamayama C, Murase M (2006) Wave structure analysis of guided waves in a bar with an arbitrary cross-section. Ultrasonics 44(1):17–24.
[21] Loveday PW (2007) Analysis of piezoelectric ultrasonic transducers attached to waveguides using waveguide finite elements.     IEEE Trans Ultrason Ferroelectr Freq Control 54(10):2045–51
[22] Loveday PW (2008) Simulation of piezoelectric excitation of guided waves using waveguide finite elements.     IEEE Trans Ultrason Ferroelectr Freq Control 55(9):2038–45
[23] Coccia S, Bartoli I, Marzani A, di Scalea FL, Salamone S, Fateh M (2011) Numerical and experimental study of guided waves for detection of defects in the rail head. NDT E Int 44(1):93–100
 [24] Volovoi VV, Hodges DH, Berdichevsky VL, Sutyrin VG (1998) Dynamic dispersion curves for non-homogeneous, anisotropic beams with cross-sections of arbitrary geometry. J Sound Vib 215(5):1101–1120
[25] Han X, Liu GR, Xi ZC, Lam KY (2002) Characteristics of waves in a functionally graded cylinder. Int J Numer Methods Eng 53(3):653–76.
[26]  Marzani A (2008) Time–transient response for ultrasonic guided waves propagating in damped cylinders. Int J Solids Struct 45(25):6347–6368.
[27] Mazzotti M, Bartoli I, Miniaci M, Marzani A (2016) Wave dispersion in thin-walled orthotropic waveguides using the first order shear deformation theory. Thin-Walled Struct 103:128–140.
[28] Hladky-Hennion AC (1996) Finite element analysis of the propagation of acoustic waves in waveguides. J Sound Vib 194(2):119–136
[29] Predoi MV, Castaings M, Hosten B, Bacon C (2007) Wave propagation along transversely periodic structures. J Acoust Soc Am 121(4):1935–44.
[30] Treyssede F. (2008) Elastic waves in helical waveguides. Wave Motion 45(4):457–470
[31] Cong M, Wu X, Liu R. (2017) Dispersion analysis of guided waves in the finned tube using the semianalytical finite element method. J Sound Vib 401:114–126
[32] Mazuch T (1996) Wave dispersion modelling in anisotropic shells and rods by the finite element method. J Sound Vib 198(4):429–438.
[33]  Duan W, Gan TH (2019) Investigation of guided wave properties of anisotropic composite laminates using a semi-analytical finite element method. Compos B Eng 173:106898.
[34] Tian Deng Q, chun Yang Z (2011) Propagation of guided waves in bonded composite structures with tapered adhesive layer. Appl Math Model 35(11):5369–5381.
[35]  Kalgutkar AP, Banerjee S (2022) Semi-Analytical Finite Element Method for the Analysis of Guided Wave Dispersion in the Pre-stressed Composite Plates. Proceedings of the 12th Structural Engineering Convention, SEC 2022 1(5)
[36] Xiao D, Han Q, Liu Y, Li C (2016) Guided wave propagation in an infinite functionally graded  magnetoelectro-elastic plate by the Chebyshev spectral element method. Compos Struct 153:704–711
[37] Marzani A, Viola E, Bartoli I, di Scalea FL, Rizzo P (2008) A semi-analytical finite element formulation for modeling stress wave propagation in axisymmetric damped waveguides. J Sound Vib 318(3):488–505.
[38] Mei H, Giurgiutiu V (2018) Predictive 1D and 2D guided-wave propagation in composite plates using the SAFE approach. Health Monitoring of Structural and Biological Systems XII., International Society for Optics and Photonics, SPIE 10600:215–225
[39] Cui R, di Scalea FL (2019) On the identification of the elastic properties of composites by ultrasonic guided waves and optimization algorithm. Compos Struct 223:110969.
[40] Treyssede F, Nguyen KL, Bonnet-BenDhia AS, Hazard C (2014) Finite element computation of trapped and leaky elastic waves in open stratified waveguides. Wave Motion 51(7):1093–1107
[41] Inoue D, Hayashi T (2015) Transient analysis of leaky Lamb waves with a semianalytical finite element method. Ultrasonics 62:80–88
[42] Duan W, Kirby R, Mudge P, Gan TH (2016) A one dimensional numerical approach for computing the eigen modes of elastic waves in buried pipelines. J Sound Vib 384:177–193
[43] Hayashi T, Inoue D (2014) Calculation of leaky Lamb waves with a semi-analytical finite element method. Ultrasonics 54(6):1460–1469
[44] Loveday PW (2009) Semi-analytical finite element analysis of elastic waveguides subjected to axial loads. Ultrasonics 49(3):298–300.
[45] Mazzotti M, Marzani A, Bartoli I, Viola E (2012) Guided waves dispersion analysis for prestressed viscoelastic waveguides by means of the SAFE method. Int J Solids Struct 49(18):2359–2372.
[46] Setshedi II, Loveday PW, Long CS, Wilke DN (2019) Estimation of rail properties using semi-analytical finite element models and guided wave ultrasound measurements. Ultrasonics 96:240–252. 
[47] Loveday PW, Long CS, Ramatlo DA (2018) Mode repulsion of ultrasonic guided waves in rails. Ultrasonics 84:341–349.
[48] Zuo P, Yu X, Fan Z (2017) Numerical modeling of embedded solid waveguides using SAFE-PML approach using a commercially available finite element package. NDT E Int 90:11–23.
[49] Zuo P, Fan Z (2017) SAFE-PML approach for modal study of waveguides with arbitrary cross sections immersed in inviscid fluid. J Sound Vib 406:181–196.
[50] Onipede O, Dong SB, Kosmatka JB (1994) Natural vibrations and waves in pretwisted rods. Compos Eng 4(5):487–502.
[51] Treyssede F, Laguerre L (2010) Investigation of elastic modes propagating in multi-wire helical waveguides. J Sound Vib 329(10):1702–1716.
[52] Mazzotti M, Marzani A, Bartoli I (2014) Dispersion analysis of leaky guided waves in fluid loaded waveguides of generic shape. Ultrasonics 54(1):408–418.
[53] Mazzotti M, Bartoli I, Marzani A, Viola E (2013) A coupled SAFE-2.5D BEM approach for the dispersion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section. Ultrasonics 53(7):1227–1241.
[54] Nguyen KL, Treyssede F, Hazard C (2015) Numerical modeling of three-dimensional open elastic waveguides combining semi-analytical finite element and perfectly matched layer methods. J Sound Vib 344:158–178
[55] Kalkowski MK, Muggleton JM, Rustighi E (2018) Axisymmetric semi-analytical finite elements for modelling waves in buried/submerged fluid-filled waveguides. Comput Struct 196:327–340
[56] Xiao D, Han Q, Liu Y, Li C (2016) Guided wave propagation in an infinite functionally graded magnetoelectro-elastic plate by the Chebyshev spectral element method. Comput Struct 153:704–711.
[57] Treyssede F (2016) Spectral element computation of high-frequency leaky modes in three-dimensional solid waveguides. J Comput Phys 314:341–354.
[58] Seyfaddini F, Nguyen VH (2019) NURBS-enriched semi-analytical finite element method (SAFE) for calculation of wave dispersion in heterogeneous waveguides, 24e Congres Francais de Mecanique, Brest, France.
 
[59] Duczek S, Gravenkamp H (2019) Mass lumping techniques in the spectral element method: On the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods. Comput Methods Appl Mech Eng 353:516–69
[60] Vu TH, Deeks AJ (2006) Use of higher-order shape functions in the scaled boundary finite element method. Int J Numer Methods Eng 65(10):1714–33.
[61] Huber AMA, Sause MGR (2018) Classification of solutions for guided waves in anisotropic composites with large numbers of layers. J Acoust Soc Am 144(6):3236–51. 
[62] Rose JL (2014) Ultrasonic Guided Waves in Solid Media. Cambridge University Press.
[63] Reddy JN (2003) Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. 2nd edn. CRC Press, Boca Raton.
[64] Dvorak G (2014) Micromechanics of Composite Materials. Springer, Dordrecht.