[1] Kazys RJ, Sestoke J, Zukauskas E (2022) Numerical Investigation of Excitation of Various Lamb Waves Modes in Thin Plastic Films. Appl Sci 12(2):849.
[2] صمیمیان تهرانی ش.، صفرپور پ.، بابایی م.، کیارسی ف. (1400)، "شناسایی ترکهای یک و چندگانه در پوسته استوانهای با استفاده از آنالیز مودال و تبدیل موجک" مجله مکانیک سازهها و شارهها، 12(2)، صفحه 13-28
[3] Willberg C, Duczek S, Vivar-Perez JM, Ahmad ZAB (2015) Simulation methods for guided wave-based structural health monitoring: a review. Appl Mech Rev 67(1): 010803.
[4] Astaneh AV, Guddati MN (2017) Dispersion analysis of composite acousto-elastic waveguides. Compos B Eng 130: 200–216.
[5] Joseph R, Li L, Haider MF, Giurgiutiu V (2019) Hybrid SAFE-GMM approach for predictive modeling of guided wave propagation in layered media. Eng Struct 193:194–206.
[6] Su Z, Ye L, Lu Y. (2006) Guided Lamb waves for identification of damage in composite structures: a review. J Sound Vib 295(3):753–780.
[7] Mitra M, Gopalakrishnan S (2016) Guided wave based structural health monitoring: a review. Smart Mater Struct 25(5):05300.
[8] Bathe KJ (2006) Finite element procedures. 1st edn. Prentice Hall, United States of America.
[9] Gopalakrishnan S (2008) Spectral finite element method, wave propagation, diagnostics and control in anisotropic and inhomogeneous structures. 1st edn. Springer, London.
[10] Gravenkamp H, Birk C, Song C (2015) Simulation of elastic guided waves interacting with defects in arbitrarily long structures using the scaled boundary finite element method. J Comput Phys 295:438–455.
[11] Chang Y, Cao W, Li N, Liu Z, Li F, Zeng L, Wei Q, Liu X (2023) Study on Propagation Characteristics of Guided Waves in Plate Structure Via Semi-Analytical Wavelet Finite Element Method. IEEE Trans Instrum Meas.
[12] Aalami B (1973) Waves in prismatic guides of arbitrary cross section. J Appl Mech 40(4):1067-1072
[13] Gopalakrishnan S (2008) Spectral finite element method, wave propagation, diagnostics and control in anisotropic and inhomogeneous structures. 1st edn. Springer, London.
[14] Zienkiewicz OC (1971) The finite element method in engineering science. McGraw-Hill, London, New York.
[15] Gavric L (1995) Computation of propagative waves in free rail using a finite element technique. J Sound Vib 185(3):531–543.
[16] Hayashi T, Song WJ, Rose JL (2003) Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41(3):175–183.
[17] Damljanovic V,Weaver RL (2004) Forced response of a cylindrical waveguide with simulation of the wavenumber extraction problem. J Acoust Soc Am 115(4):1582-91.
[18] Gravenkamp H, Birk C, Song C (2015) Simulation of elastic guided waves interacting with defects in arbitrarily long structures using the scaled boundary finite element method. J Comput Phys295:438–455.
[19] Bartoli I, Marzani A, di Scalea FL, Viola E (2006) Modeling wave propagation in damped waveguides of arbitrary cross-section. J Sound Vib 295(3):685–707.
[20] Hayashi T, Tamayama C, Murase M (2006) Wave structure analysis of guided waves in a bar with an arbitrary cross-section. Ultrasonics 44(1):17–24.
[21] Loveday PW (2007) Analysis of piezoelectric ultrasonic transducers attached to waveguides using waveguide finite elements. IEEE Trans Ultrason Ferroelectr Freq Control 54(10):2045–51
[22] Loveday PW (2008) Simulation of piezoelectric excitation of guided waves using waveguide finite elements. IEEE Trans Ultrason Ferroelectr Freq Control 55(9):2038–45
[23] Coccia S, Bartoli I, Marzani A, di Scalea FL, Salamone S, Fateh M (2011) Numerical and experimental study of guided waves for detection of defects in the rail head. NDT E Int 44(1):93–100
[24] Volovoi VV, Hodges DH, Berdichevsky VL, Sutyrin VG (1998) Dynamic dispersion curves for non-homogeneous, anisotropic beams with cross-sections of arbitrary geometry. J Sound Vib 215(5):1101–1120
[25] Han X, Liu GR, Xi ZC, Lam KY (2002) Characteristics of waves in a functionally graded cylinder. Int J Numer Methods Eng 53(3):653–76.
[26] Marzani A (2008) Time–transient response for ultrasonic guided waves propagating in damped cylinders. Int J Solids Struct 45(25):6347–6368.
[27] Mazzotti M, Bartoli I, Miniaci M, Marzani A (2016) Wave dispersion in thin-walled orthotropic waveguides using the first order shear deformation theory. Thin-Walled Struct 103:128–140.
[28] Hladky-Hennion AC (1996) Finite element analysis of the propagation of acoustic waves in waveguides. J Sound Vib 194(2):119–136
[29] Predoi MV, Castaings M, Hosten B, Bacon C (2007) Wave propagation along transversely periodic structures. J Acoust Soc Am 121(4):1935–44.
[30] Treyssede F. (2008) Elastic waves in helical waveguides. Wave Motion 45(4):457–470
[31] Cong M, Wu X, Liu R. (2017) Dispersion analysis of guided waves in the finned tube using the semianalytical finite element method. J Sound Vib 401:114–126
[32] Mazuch T (1996) Wave dispersion modelling in anisotropic shells and rods by the finite element method. J Sound Vib 198(4):429–438.
[33] Duan W, Gan TH (2019) Investigation of guided wave properties of anisotropic composite laminates using a semi-analytical finite element method. Compos B Eng 173:106898.
[34] Tian Deng Q, chun Yang Z (2011) Propagation of guided waves in bonded composite structures with tapered adhesive layer. Appl Math Model 35(11):5369–5381.
[35] Kalgutkar AP, Banerjee S (2022) Semi-Analytical Finite Element Method for the Analysis of Guided Wave Dispersion in the Pre-stressed Composite Plates. Proceedings of the 12th Structural Engineering Convention, SEC 2022 1(5)
[36] Xiao D, Han Q, Liu Y, Li C (2016) Guided wave propagation in an infinite functionally graded magnetoelectro-elastic plate by the Chebyshev spectral element method. Compos Struct 153:704–711
[37] Marzani A, Viola E, Bartoli I, di Scalea FL, Rizzo P (2008) A semi-analytical finite element formulation for modeling stress wave propagation in axisymmetric damped waveguides. J Sound Vib 318(3):488–505.
[38] Mei H, Giurgiutiu V (2018) Predictive 1D and 2D guided-wave propagation in composite plates using the SAFE approach. Health Monitoring of Structural and Biological Systems XII., International Society for Optics and Photonics, SPIE 10600:215–225
[39] Cui R, di Scalea FL (2019) On the identification of the elastic properties of composites by ultrasonic guided waves and optimization algorithm. Compos Struct 223:110969.
[40] Treyssede F, Nguyen KL, Bonnet-BenDhia AS, Hazard C (2014) Finite element computation of trapped and leaky elastic waves in open stratified waveguides. Wave Motion 51(7):1093–1107
[41] Inoue D, Hayashi T (2015) Transient analysis of leaky Lamb waves with a semianalytical finite element method. Ultrasonics 62:80–88
[42] Duan W, Kirby R, Mudge P, Gan TH (2016) A one dimensional numerical approach for computing the eigen modes of elastic waves in buried pipelines. J Sound Vib 384:177–193
[43] Hayashi T, Inoue D (2014) Calculation of leaky Lamb waves with a semi-analytical finite element method. Ultrasonics 54(6):1460–1469
[44] Loveday PW (2009) Semi-analytical finite element analysis of elastic waveguides subjected to axial loads. Ultrasonics 49(3):298–300.
[45] Mazzotti M, Marzani A, Bartoli I, Viola E (2012) Guided waves dispersion analysis for prestressed viscoelastic waveguides by means of the SAFE method. Int J Solids Struct 49(18):2359–2372.
[46] Setshedi II, Loveday PW, Long CS, Wilke DN (2019) Estimation of rail properties using semi-analytical finite element models and guided wave ultrasound measurements. Ultrasonics 96:240–252.
[47] Loveday PW, Long CS, Ramatlo DA (2018) Mode repulsion of ultrasonic guided waves in rails. Ultrasonics 84:341–349.
[48] Zuo P, Yu X, Fan Z (2017) Numerical modeling of embedded solid waveguides using SAFE-PML approach using a commercially available finite element package. NDT E Int 90:11–23.
[49] Zuo P, Fan Z (2017) SAFE-PML approach for modal study of waveguides with arbitrary cross sections immersed in inviscid fluid. J Sound Vib 406:181–196.
[50] Onipede O, Dong SB, Kosmatka JB (1994) Natural vibrations and waves in pretwisted rods. Compos Eng 4(5):487–502.
[51] Treyssede F, Laguerre L (2010) Investigation of elastic modes propagating in multi-wire helical waveguides. J Sound Vib 329(10):1702–1716.
[52] Mazzotti M, Marzani A, Bartoli I (2014) Dispersion analysis of leaky guided waves in fluid loaded waveguides of generic shape. Ultrasonics 54(1):408–418.
[53] Mazzotti M, Bartoli I, Marzani A, Viola E (2013) A coupled SAFE-2.5D BEM approach for the dispersion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section. Ultrasonics 53(7):1227–1241.
[54] Nguyen KL, Treyssede F, Hazard C (2015) Numerical modeling of three-dimensional open elastic waveguides combining semi-analytical finite element and perfectly matched layer methods. J Sound Vib 344:158–178
[55] Kalkowski MK, Muggleton JM, Rustighi E (2018) Axisymmetric semi-analytical finite elements for modelling waves in buried/submerged fluid-filled waveguides. Comput Struct 196:327–340
[56] Xiao D, Han Q, Liu Y, Li C (2016) Guided wave propagation in an infinite functionally graded magnetoelectro-elastic plate by the Chebyshev spectral element method. Comput Struct 153:704–711.
[57] Treyssede F (2016) Spectral element computation of high-frequency leaky modes in three-dimensional solid waveguides. J Comput Phys 314:341–354.
[58] Seyfaddini F, Nguyen VH (2019) NURBS-enriched semi-analytical finite element method (SAFE) for calculation of wave dispersion in heterogeneous waveguides, 24e Congres Francais de Mecanique, Brest, France.
[59] Duczek S, Gravenkamp H (2019) Mass lumping techniques in the spectral element method: On the equivalence of the row-sum, nodal quadrature, and diagonal scaling methods. Comput Methods Appl Mech Eng 353:516–69
[60] Vu TH, Deeks AJ (2006) Use of higher-order shape functions in the scaled boundary finite element method. Int J Numer Methods Eng 65(10):1714–33.
[61] Huber AMA, Sause MGR (2018) Classification of solutions for guided waves in anisotropic composites with large numbers of layers. J Acoust Soc Am 144(6):3236–51.
[62] Rose JL (2014) Ultrasonic Guided Waves in Solid Media. Cambridge University Press.
[63] Reddy JN (2003) Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. 2nd edn. CRC Press, Boca Raton.
[64] Dvorak G (2014) Micromechanics of Composite Materials. Springer, Dordrecht.