تحلیل کمانش شبه سه بعدی صفحات ساندویچی مدرج تابعی با رویه های پیزوالکتریک بر اساس تئوری برشی مرتبه بالای بهبود یافته

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکترای تخصصی مهندسی مکانیک، گروه مکانیک جامدات، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

2 استاد، مهندسی مکانیک، گروه مکانیک جامدات، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

3 استاد، پژوهشکده علوم وفناوری نانو، دانشگاه کاشان، کاشان، ایران

4 استادیار گروه مهندسی مکانیک، مرکز آموزش عالی محلات، محلات، ایران

چکیده

در این پژوهش به بررسی رفتار کمانشی شبه سه‌بعدی صفحه مدرج تابعی یکپارچه شده با رویه‌های پیزوالکتریک به عنوان یک سازه ساندویچی بسیار مهم و حساس در صنایع مختلف بر اساس تئوری برشی بهبود یافته مرتبه بالا با در نظر گرفتن اثرات ‏کششی در راستای ضخامت پرداخته شده است. ‏خواص مکانیکی هسته به صورت ناهمگن فرض شده و رویه ها بر اساس تئوری پیزوالاستیسیته مدل سازی ‏‏شده اند. معادلات حرکت با به کارگیری اصل کار ‏مجازی بر اساس شرایط بارگذاری تک‌محوری و دو ‏محوری ‏استخراج ‏شده‌اند. پس از تطبیق و ارزیابی روش حاضر، بارهای ‏بحرانی کمانش ورق سه لایه تحت میدان الکتریکی در شرایط مختلف با استفاده از روش تحلیلی ناویر ‏محاسبه شده اند. در نهایت اثرات ‏پارامترهای مختلف از جمله شاخص کسر حجمی، پارامترهای بی بعد ‏هندسی و مقایسه مدل ‏های دو ‏بعدی و شبه سه بعدی مورد ‏بررسی قرار گرفته است. نتایج نشان می دهد که با افزایش نسبت ‏عرض به طول و ‏همچنین کاهش ضخامت اختلاف ‏بین مدل های دو بعدی و شبه سه بعدی کاهش می یابد. در نهایت نتایج نشان ‏می دهد ‏که تئوری مورد استفاده، علاوه بر سادگی قابل توجه، در مدل سازی از دقت ‏بالایی برخوردار می باشد‏.‏

کلیدواژه‌ها

موضوعات


[1] Song J, Wu D, Arefi M (2022) Modified couple stress and thickness-stretching included formulation of a sandwich micro shell subjected to electro-magnetic load resting on elastic foundation. Def Technol 18(11): 1935-1944.
[2] Sabahi MA, Saidi AR (2023) Nonlinear vibrations of functionally graded porous micropipes conveying fluid flow. J Solid Fluid Mech 13(2): 89-101.
[3] Nazemnezhad R, Shokrollahi H (2022) Surface Energy Effect on Free Axial Vibration of Cracked Nanorods Made of Functionally Graded Materials Based on Rayleigh Theory. J Solid Fluid Mech 12(4): 103-116
[4] Swaminathan K, Sachin H, Rajanna T (2021) Buckling analysis of functionally graded materials by dynamic approach. Mater Today Proc 45: 172-178.
[5] Hajlaoui A, Chebbi E, Dammak F (2021) Three-dimensional thermal buckling analysis of functionally graded material structures using a modified FSDT-based solid-shell element. Int J Press Vessel Pip 194: 104547.
[6] Hosseini-Hashemi K, Talebitooti R,  Hosseini-Hashemi, S (2023) The exact characteristic equation of frequency and mode shape for transverse vibrations of non-uniform and non-homogeneous Euler Bernoulli beam with general non-classical boundary conditions at both ends. Mech Adv  Smart Mater 3(1): 1-20.
[7] Nguyen TK, Thai HT, Vo TP (2020) A novel general higher-order shear deformation theory for static, vibration and thermal buckling analysis of the functionally graded plates. J Therm Stresses 44(3): 377-394.
[8] Dehghan M, Shahriari B, Moosaie A (2023) Nonlinear Thermo-Elastic Analysis of FG Cylinder with Temperature-Dependent Properties with Perturbation and Differential Quadrature Methods. J Solid Fluid Mech 13(4): 1-14.
[9] Arefi M, Soltan Arani AH (2020) Nonlocal vibration analysis of the three-layered FG nanoplates subjected to applied electric potential considering thickness stretching effect. Proc Inst Mech Eng Pt L J 234(9): 1183-1202.
[10] Yıldız T, Esen I (2023) Effect of foam structure on thermo-mechanical buckling of foam core sandwich nanoplates with layered face plates made of functionally graded material (FGM). Acta Mech 234(12): 6407-6437.
[11] Moita JS, Araújo AL, Correia VF, Soares CMM, Herskovits J (2020). Buckling behavior of composite and functionally graded material plates. Eur J Mech A-Solids 80: 103921.
[12] Mohammadi M, Mohseni E, Moeinfar M (2019) Bending, buckling and free vibration analysis of incompressible functionally graded plates using higher order shear and normal deformable plate theory. Appl Math Model 69: 47-62.
[13] Daikh AA, Drai A, Bensaid I, Houari MSA, Tounsi A (2021) On vibration of functionally graded sandwich nanoplates in the thermal environment. J Sandw Struct Mater 23(6): 2217-2244.
[14] Shadmani M, Afsari A, Jahedi R, Kazemzadeh-Parsi MJ (2024) Nonlinear free vibrations analysis of truncated conical shells made of bidirectional functionally graded materials. J Vib Control 30(13-14): 842-2856.
[15] Forghani MA, Zahedinejhad P, Kazemzadeh Parsi MJ (2021) Frequency Analysis of Bi-directional Porous Functionally Graded Beams with Variable cross section on Elastic Foundation using Reddy Third Order Shear Deformation Theory. J Solid Fluid Mech 11(3): 97-118
[16] Sitli Y, Mhada K, Bourihane O, Rhanim H (2021) Buckling and post-buckling analysis of a functionally graded material (FGM) plate by the asymptotic numerical method. In Struct 31:1031-1040
[17] Khorshidi K,  Ghasemi M, Bahrami M (2023) Buckling Analysis of a Functionally Graded unidirectional rectangular NanoPlate considering the surface effect. Mech Adv  Smart Mater 3: 21-52.
[18] Cuong-Le T, Nguyen KD, Hoang-Le M, Sang-To T, Phan-Vu P, Wahab MA (2022) Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate. Phys B: Condens Matter 631: 413726.
[19] Shimpi RP (2002) Refined plate theory and its variants. AIAA j 40(1): 137-146.
[20] Shimpi RP, Patel HG (2006) A two variable refined plate theory for orthotropic plate analysis. Int J Solids Struct 43(22-23): 6783-6799.
[21] Shimpi RP, Patel HG (2006) Free vibrations of plate using two variable refined plate theory. J Sound Vib 296(4-5): 979-999.
[22 Fazeli H, Adamian A, Hosseini-Sianaki A (2022) Vibration analysis of multi-directional functionally graded nanoplates with initial geometric imperfection using quasi-3d theory based on an isogeometric approach,  J Solid Fluid Mech 11(6): 111-126
[23] Karami B, Ghayesh MH, Fantuzzi N (2024) Quasi-3D free and forced vibrations of poroelastic microplates in the framework of modified couple stress theory. Compos Struct 330: 117840.
[24] Daikh AA, Houari MSA, Eltaher MA (2021) A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates. Compos Struct 262: 113347.
[25] Mellal F, Bennai R, Avcar M, Nebab M, Atmane H A (2023) On the vibration and buckling behaviors of porous FG beams resting on variable elastic foundation utilizing higher-order shear deformation theory. Acta Mech 234(9): 3955-3977.
[26] Karimi M, Khoshgoftar MJ, Karimi M, Mirzaali MJ, Javanbakht Z (2023) An analytical model for the static behaviour of honeycomb sandwich plates with auxetic cores using higher-order shear deformation theories. Int J Mech Mater Des 19(4): 951-969.
[27] Tahir SI, Tounsi A, Chikh A, Al-Osta M A, Al-Dulaijan SU, Al-Zahrani MM (2022) The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT. Steel Compos Struct 42(4): 501.
[28] Mamandi A, Mirzaei ghaleh M (2021) Nonlinear Vibration of a Microbeam on a Winkler Foundation and ‎Subjected to an Axial Load using Modified Couple Stress Theory. J Solid Fluid Mech 10(4): 181-‎‎194.‎
[29] Khorshidi K, Karimi M, Rezaeisaray M (2023) Piezoelectric Energy Harvesting from Functionally Graded Beams Using Modified Shear Deformation Theories. Mech Adv  Smart Mater 1(2): 136-154.
[30] Zenkour AM, Alghanmi RA (2022) A refined quasi-3D theory for the bending of functionally graded porous sandwich plates resting on elastic foundations. Thin-Walled Struct 181: 110047.
[31] Hadji L, Plevris V, Madan R, Ait Atmane H (2024) Multi-directional functionally graded sandwich plates: buckling and free vibration analysis with refined plate models under various boundary conditions. Comput 12(4): 65.
[32] Vu TV, Cao HL, Truong GT, Kim CS (2023) Buckling analysis of the porous sandwich functionally graded plates resting on Pasternak foundations by Navier solution combined with a new refined quasi-3D hyperbolic shear deformation theory. Mech Based Des Struct 51(11): 6227-6253..‏
[33] Akbari M, Sadighi M, Eslami MR, Kiani Y (2023) Axisymmetric free vibration analysis of functionally graded sandwich annular plates: a quasi-3D shear and normal deformable model. Int J Struct Stab Dyn 23(08): 2350086.
[34] Soltan Arani AH, Ghorbanpour Arani A, Khoddami Maraghi Z (2024) Nonlocal quasi-3d vibration/analysis of three-layer nanoplate surrounded by Orthotropic Visco-Pasternak foundation by considering surface effects and neutral surface concept. Mech Based Des Struct : 1-36.
[35] Hai Van NT, Hong NT (2024) Novel finite element modeling for free vibration and buckling analysis of non-uniform thickness 2D-FG sandwich porous plates using refined Quasi 3D theory. Mech Based Des Struct 52(6):3052-3078.
[36] El Meiche N, Tounsi A, Ziane N, Mechab I (2011) A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int J Mech Sci 53(4): 237-247.‏
[37] Van VT, Van Hieu N (2022) Buckling analysis of functionally graded sandwich plates resting on Pasternak foundation using a novel refined quasi-3D third-order shear deformation theory. J Sci Tech Civ Eng (JSTCE)-HUCE, 16(1): 68-79.
[38] Khoddami Maraghi Z (2019) Vibration Analysis of Polymer Nanocomposite-Magnetostrictive Faced Sandwich Plate Including Feedback Control System. modares mech eng 19(11): 2823-2835.
[39] Arefi M, Soltan Arani AH (2018) Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments. Mech Based Des Struct 46(6): 669-692.‏
[40] Ghorbanpour Arani A , Kolahchi R, Zarei MS (2015) Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory. Compos Struct 132: 506-526..
[41] Haghparast E, Ghorbanpour-Arani A, Ghorbanpour Arani A (2020) Effect of fluid–structure interaction on vibration of moving sandwich plate with Balsa wood core and nanocomposite face sheets. Int J Appl Mech 12(07): 2050078.
[42] Ghorbanpour-Arani A, Khoddami Maraghi Z, Ghorbanpour Arani A (2023) The Frequency Response of Intelligent Composite Sandwich Plate Under Biaxial In-Plane Forces. J Solid Mech 15(1): ‏1-18.
 
[43] Liu C, Ke LL, Wang YS, Yang J, Kitipornchai S (2013) Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos Structb106: 167-174.
[44] Ghorbanpour Arani A, Kolahdouzan F, Abdollahian M (2018) Nonlocal buckling of embedded magnetoelectroelastic sandwich nanoplate using refined zigzag theory. J Appl Math Mech 39: 529-546.
[45] Ghorbanpour Arani A, Soltan Arani AH, Haghparast E  (2018) Bending analysis of magneto-electro-thermo-elastic functionally graded nano-beam based on first order shear deformation theory. Int J Bio-Inorg ‎Hybrid Nanomaterials 7(2): 163-176.
[46] Khoddami Maraghi Z (2019) Flutter and divergence instability of nanocomposite sandwich plate with magnetostrictive face sheets. J Sound Vib 457: 240-260.‏
[47] Mindlin R (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 18(1): 31-38.
[48] Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51(4): 745-752.
[49] Touratier M (1991) An efficient standard plate theory. Int J Eng Sci 29(8): 901-916.