تحلیل کمانش شبه سه بعدی صفحات ساندویچی مدرج تابعی با رویه های پیزوالکتریک بر اساس تئوری برشی مرتبه بالای بهبود یافته

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکترای تخصصی مهندسی مکانیک، گروه مکانیک جامدات، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

2 استاد، مهندسی مکانیک، گروه مکانیک جامدات، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

3 استاد، پژوهشکده علوم وفناوری نانو، دانشگاه کاشان، کاشان، ایران

4 استادیار گروه مهندسی مکانیک، مرکز آموزش عالی محلات، محلات، ایران

10.22044/jsfm.2025.15042.3891

چکیده

در این پژوهش به بررسی رفتار کمانشی شبه سه‌بعدی صفحه مدرج تابعی یکپارچه شده با رویه‌های پیزوالکتریک به عنوان یک سازه ساندویچی بسیار مهم و حساس در صنایع مختلف بر اساس تئوری برشی بهبود یافته مرتبه بالا با در نظر گرفتن اثرات ‏کششی در راستای ضخامت پرداخته شده است. ‏خواص مکانیکی هسته به صورت ناهمگن فرض شده و رویه ها بر اساس تئوری پیزوالاستیسیته مدل سازی ‏‏شده اند. معادلات حرکت با به کارگیری اصل کار ‏مجازی بر اساس شرایط بارگذاری تک‌محوری و دو ‏محوری ‏استخراج ‏شده‌اند. پس از تطبیق و ارزیابی روش حاضر، بارهای ‏بحرانی کمانش ورق سه لایه تحت میدان الکتریکی در شرایط مختلف با استفاده از روش تحلیلی ناویر ‏محاسبه شده اند. در نهایت اثرات ‏پارامترهای مختلف از جمله شاخص کسر حجمی، پارامترهای بی بعد ‏هندسی و مقایسه مدل ‏های دو ‏بعدی و شبه سه بعدی مورد ‏بررسی قرار گرفته است. نتایج نشان می دهد که با افزایش نسبت ‏عرض به طول و ‏همچنین کاهش ضخامت اختلاف ‏بین مدل های دو بعدی و شبه سه بعدی کاهش می یابد. در نهایت نتایج نشان ‏می دهد ‏که تئوری مورد استفاده، علاوه بر سادگی قابل توجه، در مدل سازی از دقت ‏بالایی برخوردار می باشد‏.‏

کلیدواژه‌ها

موضوعات


[1] Song J, Wu D, Arefi M (2022) Modified couple stress and thickness-stretching included formulation of a sandwich micro shell subjected to electro-magnetic load resting on elastic foundation. Def Technol 18(11): 1935-1944.
[2] Sabahi MA, Saidi AR (2023) Nonlinear vibrations of functionally graded porous micropipes conveying fluid flow. J Solid Fluid Mech 13(2): 89-101.
[3] Nazemnezhad R, Shokrollahi H (2022) Surface Energy Effect on Free Axial Vibration of Cracked Nanorods Made of Functionally Graded Materials Based on Rayleigh Theory. J Solid Fluid Mech 12(4): 103-116
[4] Swaminathan K, Sachin H, Rajanna T (2021) Buckling analysis of functionally graded materials by dynamic approach. Mater Today Proc 45: 172-178.
[5] Hajlaoui A, Chebbi E, Dammak F (2021) Three-dimensional thermal buckling analysis of functionally graded material structures using a modified FSDT-based solid-shell element. Int J Press Vessel Pip 194: 104547.
[6] Hosseini-Hashemi K, Talebitooti R,  Hosseini-Hashemi, S (2023) The exact characteristic equation of frequency and mode shape for transverse vibrations of non-uniform and non-homogeneous Euler Bernoulli beam with general non-classical boundary conditions at both ends. Mech Adv  Smart Mater 3(1): 1-20.
[7] Nguyen TK, Thai HT, Vo TP (2020) A novel general higher-order shear deformation theory for static, vibration and thermal buckling analysis of the functionally graded plates. J Therm Stresses 44(3): 377-394.
[8] Dehghan M, Shahriari B, Moosaie A (2023) Nonlinear Thermo-Elastic Analysis of FG Cylinder with Temperature-Dependent Properties with Perturbation and Differential Quadrature Methods. J Solid Fluid Mech 13(4): 1-14.
[9] Arefi M, Soltan Arani AH (2020) Nonlocal vibration analysis of the three-layered FG nanoplates subjected to applied electric potential considering thickness stretching effect. Proc Inst Mech Eng Pt L J 234(9): 1183-1202.
[10] Yıldız T, Esen I (2023) Effect of foam structure on thermo-mechanical buckling of foam core sandwich nanoplates with layered face plates made of functionally graded material (FGM). Acta Mech 234(12): 6407-6437.
[11] Moita JS, Araújo AL, Correia VF, Soares CMM, Herskovits J (2020). Buckling behavior of composite and functionally graded material plates. Eur J Mech A-Solids 80: 103921.
[12] Mohammadi M, Mohseni E, Moeinfar M (2019) Bending, buckling and free vibration analysis of incompressible functionally graded plates using higher order shear and normal deformable plate theory. Appl Math Model 69: 47-62.
[13] Daikh AA, Drai A, Bensaid I, Houari MSA, Tounsi A (2021) On vibration of functionally graded sandwich nanoplates in the thermal environment. J Sandw Struct Mater 23(6): 2217-2244.
[14] Shadmani M, Afsari A, Jahedi R, Kazemzadeh-Parsi MJ (2024) Nonlinear free vibrations analysis of truncated conical shells made of bidirectional functionally graded materials. J Vib Control 30(13-14): 842-2856.
[15] Forghani MA, Zahedinejhad P, Kazemzadeh Parsi MJ (2021) Frequency Analysis of Bi-directional Porous Functionally Graded Beams with Variable cross section on Elastic Foundation using Reddy Third Order Shear Deformation Theory. J Solid Fluid Mech 11(3): 97-118
[16] Sitli Y, Mhada K, Bourihane O, Rhanim H (2021) Buckling and post-buckling analysis of a functionally graded material (FGM) plate by the asymptotic numerical method. In Struct 31:1031-1040
[17] Khorshidi K,  Ghasemi M, Bahrami M (2023) Buckling Analysis of a Functionally Graded unidirectional rectangular NanoPlate considering the surface effect. Mech Adv  Smart Mater 3: 21-52.
[18] Cuong-Le T, Nguyen KD, Hoang-Le M, Sang-To T, Phan-Vu P, Wahab MA (2022) Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate. Phys B: Condens Matter 631: 413726.
[19] Shimpi RP (2002) Refined plate theory and its variants. AIAA j 40(1): 137-146.
[20] Shimpi RP, Patel HG (2006) A two variable refined plate theory for orthotropic plate analysis. Int J Solids Struct 43(22-23): 6783-6799.
[21] Shimpi RP, Patel HG (2006) Free vibrations of plate using two variable refined plate theory. J Sound Vib 296(4-5): 979-999.
[22 Fazeli H, Adamian A, Hosseini-Sianaki A (2022) Vibration analysis of multi-directional functionally graded nanoplates with initial geometric imperfection using quasi-3d theory based on an isogeometric approach,  J Solid Fluid Mech 11(6): 111-126
[23] Karami B, Ghayesh MH, Fantuzzi N (2024) Quasi-3D free and forced vibrations of poroelastic microplates in the framework of modified couple stress theory. Compos Struct 330: 117840.
[24] Daikh AA, Houari MSA, Eltaher MA (2021) A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates. Compos Struct 262: 113347.
[25] Mellal F, Bennai R, Avcar M, Nebab M, Atmane H A (2023) On the vibration and buckling behaviors of porous FG beams resting on variable elastic foundation utilizing higher-order shear deformation theory. Acta Mech 234(9): 3955-3977.
[26] Karimi M, Khoshgoftar MJ, Karimi M, Mirzaali MJ, Javanbakht Z (2023) An analytical model for the static behaviour of honeycomb sandwich plates with auxetic cores using higher-order shear deformation theories. Int J Mech Mater Des 19(4): 951-969.
[27] Tahir SI, Tounsi A, Chikh A, Al-Osta M A, Al-Dulaijan SU, Al-Zahrani MM (2022) The effect of three-variable viscoelastic foundation on the wave propagation in functionally graded sandwich plates via a simple quasi-3D HSDT. Steel Compos Struct 42(4): 501.
[28] Mamandi A, Mirzaei ghaleh M (2021) Nonlinear Vibration of a Microbeam on a Winkler Foundation and ‎Subjected to an Axial Load using Modified Couple Stress Theory. J Solid Fluid Mech 10(4): 181-‎‎194.‎
[29] Khorshidi K, Karimi M, Rezaeisaray M (2023) Piezoelectric Energy Harvesting from Functionally Graded Beams Using Modified Shear Deformation Theories. Mech Adv  Smart Mater 1(2): 136-154.
[30] Zenkour AM, Alghanmi RA (2022) A refined quasi-3D theory for the bending of functionally graded porous sandwich plates resting on elastic foundations. Thin-Walled Struct 181: 110047.
[31] Hadji L, Plevris V, Madan R, Ait Atmane H (2024) Multi-directional functionally graded sandwich plates: buckling and free vibration analysis with refined plate models under various boundary conditions. Comput 12(4): 65.
[32] Vu TV, Cao HL, Truong GT, Kim CS (2023) Buckling analysis of the porous sandwich functionally graded plates resting on Pasternak foundations by Navier solution combined with a new refined quasi-3D hyperbolic shear deformation theory. Mech Based Des Struct 51(11): 6227-6253..‏
[33] Akbari M, Sadighi M, Eslami MR, Kiani Y (2023) Axisymmetric free vibration analysis of functionally graded sandwich annular plates: a quasi-3D shear and normal deformable model. Int J Struct Stab Dyn 23(08): 2350086.
[34] Soltan Arani AH, Ghorbanpour Arani A, Khoddami Maraghi Z (2024) Nonlocal quasi-3d vibration/analysis of three-layer nanoplate surrounded by Orthotropic Visco-Pasternak foundation by considering surface effects and neutral surface concept. Mech Based Des Struct : 1-36.
[35] Hai Van NT, Hong NT (2024) Novel finite element modeling for free vibration and buckling analysis of non-uniform thickness 2D-FG sandwich porous plates using refined Quasi 3D theory. Mech Based Des Struct 52(6):3052-3078.
[36] El Meiche N, Tounsi A, Ziane N, Mechab I (2011) A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int J Mech Sci 53(4): 237-247.‏
[37] Van VT, Van Hieu N (2022) Buckling analysis of functionally graded sandwich plates resting on Pasternak foundation using a novel refined quasi-3D third-order shear deformation theory. J Sci Tech Civ Eng (JSTCE)-HUCE, 16(1): 68-79.
[38] Khoddami Maraghi Z (2019) Vibration Analysis of Polymer Nanocomposite-Magnetostrictive Faced Sandwich Plate Including Feedback Control System. modares mech eng 19(11): 2823-2835.
[39] Arefi M, Soltan Arani AH (2018) Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments. Mech Based Des Struct 46(6): 669-692.‏
[40] Ghorbanpour Arani A , Kolahchi R, Zarei MS (2015) Visco-surface-nonlocal piezoelasticity effects on nonlinear dynamic stability of graphene sheets integrated with ZnO sensors and actuators using refined zigzag theory. Compos Struct 132: 506-526..
[41] Haghparast E, Ghorbanpour-Arani A, Ghorbanpour Arani A (2020) Effect of fluid–structure interaction on vibration of moving sandwich plate with Balsa wood core and nanocomposite face sheets. Int J Appl Mech 12(07): 2050078.
[42] Ghorbanpour-Arani A, Khoddami Maraghi Z, Ghorbanpour Arani A (2023) The Frequency Response of Intelligent Composite Sandwich Plate Under Biaxial In-Plane Forces. J Solid Mech 15(1): ‏1-18.
 
[43] Liu C, Ke LL, Wang YS, Yang J, Kitipornchai S (2013) Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos Structb106: 167-174.
[44] Ghorbanpour Arani A, Kolahdouzan F, Abdollahian M (2018) Nonlocal buckling of embedded magnetoelectroelastic sandwich nanoplate using refined zigzag theory. J Appl Math Mech 39: 529-546.
[45] Ghorbanpour Arani A, Soltan Arani AH, Haghparast E  (2018) Bending analysis of magneto-electro-thermo-elastic functionally graded nano-beam based on first order shear deformation theory. Int J Bio-Inorg ‎Hybrid Nanomaterials 7(2): 163-176.
[46] Khoddami Maraghi Z (2019) Flutter and divergence instability of nanocomposite sandwich plate with magnetostrictive face sheets. J Sound Vib 457: 240-260.‏
[47] Mindlin R (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 18(1): 31-38.
[48] Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51(4): 745-752.
[49] Touratier M (1991) An efficient standard plate theory. Int J Eng Sci 29(8): 901-916.