[1] Paїdoussis MP )2014( Fluid-structure interactions: slender structures and axial flow. Academic Press, London.
[2] Tang M, Ni Q, Wang L, Luo Y, Wang Y (2014) Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory. Int J Eng Sci 84: 1–10.
[3] Kheiri M, Païdoussis MP, Costa Del Pozo G, Amabili M (2014) Dynamics of a pipe conveying fluid flexibly restrained at the ends. J Fluid Struct 49: 360–385.
[4] Huo Y, Wang Z (2016) Dynamic analysis of a vertically deploying/retracting cantilevered pipe conveying fluid. J. Sound Vib 360: 224-238.
[5] Zhang YF, Yao MH, Zhang W, Wen BC (2017) Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance. Aerosp Sci Technol 68: 441-453.
[6] Zhang YF, Liu T, Zhang W (2020) Nonlinear resonant responses, mode interactions, and multitime periodic and chaotic oscillations of a cantilevered pipe conveying pulsating fluid under external harmonic force. Complexity 2020: 1-26.
[7] Pisarski D, Konowrocki R, Szmidt T (2018) Dynamics and optimal control of an electromagnetically actuated cantilever pipe conveying fluid. J. Sound Vib 432: 420–436.
[8] Li J, Deng H, Jiang W (2019) Dynamic response and vibration suppression of a cantilevered pipe conveying fluid under periodic excitation. J Vib Control 25: 1695-1705.
[9] Ghane M, Saidi AR, Bahaadini R (2020) Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory. Appl Math Model 80: 65-83.
[10] Chopra I, Sirohi J (2013) Smart structures theory. Cambridge University Press, Cambridge.
[11] Lin YH, Chu CL (1996) Active flutter control of a cantilever tube conveying fluid using piezoelectric actuators. J. Sound Vib 196: 97-105.
[12] Lyu X, Chen F, Ren Q, Tang Y, Ding Q, Yang T (2020) Ultra-thin piezoelectric lattice for vibration suppression in pipe conveying fluid. Acta Mech Solida Sin 33: 770–780.
[13] Elvin NG, Elvin AA (2009) The flutter response of a piezoelectrically damped cantilever pipe. J Intel Mat Syst Str 20: 2017-2026.
[14] Abbasnejad B, Shabani R, Rezazadeh G (2015) Stability analysis of a piezoelectrically actuated micro‑pipe conveying fluid. Microfluid Nanofluid 19: 577–584.
[15] Mohammadimehr M, Mehrabi M (2018) Electro-thermo-mechanical vibration and stability analyses of double-bonded micro composite sandwich piezoelectric tubes conveying fluid flow. Appl Math Model 60: 255-272.
[16] Wang G, Shen J (2019) Flutter instabilities of cantilevered piezoelectric pipe conveying fluid. J Intel Mat Syst Str 30: 606-6017.
[17] Khajehpour S, Azadi V (2015) Vibration suppression of a rotating flexible cantilever pipe conveying fluid using piezoelectric layers. Lat Am J Solids Stru 12: 1042-1060.
[18] Pei YC, Sun YH, Wang JX (2013) Dynamics of rotating conveying mud drill string subjected to torque and longitudinal thrust. Meccanica 48: 2189-2201.
[19] Eftekhari M, Hosseini M (2016) On the stability of spinning functionally graded cantilevered pipes subjected to fluid-thermomechanical loading. Int J Struct Stab Dy 16: 1550062.
[20] Bahaadini R, Saidi AR (2018) Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment. Eur J Mech A-Solid 72: 298-309.
[21] Liang F, Yang XD, Qian YJ, Zhang W (2018) Transverse free vibration and stability analysis of spinning pipes conveying fluid. Int J Mech Sci 137: 195–204.
[22] Liang F, Yang XD, Zhang W, Qian YJ (2018) Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment. J. Sound Vib 417: 65-79.
[23] Liang F, Yang XD, Zhang W, Qian YJ (2019) Vibrations in 3D space of a spinning supported pipe exposed to internal and external annular flows. J Fluid Struct 87: 247–262.
[24] Abdollahi R, Firouz-abadi RD, Rahmanian M (2020) On the stability of rotating pipes conveying fluid in annular liquid medium. J. Sound Vib 494: 115891.
[25] Erturk A, Inman DJ (2011) Piezoelectric Energy Harvesting. John Wiley & Sons, Hoboken, N.J.
[26] Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130: 041002.
[27] Stanton SC, McGehee CC, Mann BP (2010) Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D 239: 640-653.
[28] Timoshenko S, Young DH (1968) Elements of Strength of Materials. Van Nostrand Reinhold, New York.
[29] Benjamin TB (1961) Dynamics of a system of articulated pipes conveying fluid. I. Theory. Proc R Soc Lon Ser-A 261: 457–486.
[30] Wang G (2012) Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler–Bernoulli beam theory. J Intel Mat Syst Str 24: 226-239.
[31] Meirovitch L (1997) Principles and techniques of vibrations. Prentice-Hall, Upper Saddle River, N.J.