پاسخ نابالانسی یک لوله دوار حامل سیال قائم مجهز به وصله‌های پیزوالکتریک

نوع مقاله : مقاله مستقل

نویسنده

استادیار گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه یاسوج، یاسوج، ایران

چکیده

کاربردهای مهندسی زیادی از لوله ها در مقیاس های مختلف برای حمل سیال وجود دارد. در این مطالعه، مشخصات دینامیکی یک لوله دوار حامل سیال قائم مجهز به وصله های پیزوالکتریک، تحلیل شده است. بر اساس تئوری تیر اویلر – برنولی، با استفاده از اصل همیلتون، معادلات حاکم بر حرکت سیستم استخراج شده اند. در این معادلات، کوپلینگ ژیروسکوپی، کوپلینگ الکترومکانیکی و اثرات گرانشی در نظر گرفته شده اند. روش گالرکین برای گسسته سازی معادلات حرکت، به کار گرفته شده است. نتایج عددی برای پیشبینی اثرات پارامترهای زاویه قرارگیری لایه پیزوالکتریک، سرعت دورانی، طول لوله و سرعت جریان روی پاسخ نابالانسی سیستم بررسی شده اند. نتایج نشان می دهد که بسته به مقدار فرکانس تحریک، دامنه ارتعاشات می تواند با افزایش زاویه قرارگیری لایه پیزوالکتریک، کاهش یا افزایش یابد. نتایج این تحقیق می تواند در طراحی لوله پیزوالکتریک و پیشبینی های عملکردی برای کنترل ارتعاشات و کاربردهای برداشت کننده های انرژی در آینده استفاده شود.

کلیدواژه‌ها

موضوعات


[1] Paїdoussis MP )2014( Fluid-structure interactions: slender structures and axial flow. Academic Press, London.
[2] Tang M, Ni Q, Wang L, Luo Y, Wang Y (2014) Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory. Int J Eng Sci 84: 1–10.
[3] Kheiri M, Païdoussis MP, Costa Del Pozo G, Amabili M (2014) Dynamics of a pipe conveying fluid flexibly restrained at the ends. J Fluid Struct 49: 360–385.
[4] Huo Y, Wang Z (2016) Dynamic analysis of a vertically deploying/retracting cantilevered pipe conveying fluid. J. Sound Vib 360: 224-238.
[5] Zhang YF, Yao MH, Zhang W, Wen BC (2017) Dynamical modeling and multi-pulse chaotic dynamics of cantilevered pipe conveying pulsating fluid in parametric resonance. Aerosp Sci Technol 68: 441-453.
[6] Zhang YF, Liu T, Zhang W (2020) Nonlinear resonant responses, mode interactions, and multitime periodic and chaotic oscillations of a cantilevered pipe conveying pulsating fluid under external harmonic force. Complexity 2020: 1-26.
[7] Pisarski D, Konowrocki R, Szmidt T (2018) Dynamics and optimal control of an electromagnetically actuated cantilever pipe conveying fluid. J. Sound Vib 432: 420–436.
[8] Li J, Deng H, Jiang W (2019) Dynamic response and vibration suppression of a cantilevered pipe conveying fluid under periodic excitation. J Vib Control 25: 1695-1705.
[9] Ghane M, Saidi AR, Bahaadini R (2020) Vibration of fluid-conveying nanotubes subjected to magnetic field based on the thin-walled Timoshenko beam theory. Appl Math Model 80: 65-83.
[10] Chopra I, Sirohi J (2013) Smart structures theory. Cambridge University Press, Cambridge.
[11] Lin YH, Chu CL (1996) Active flutter control of a cantilever tube conveying fluid using piezoelectric actuators. J. Sound Vib 196: 97-105.
[12] Lyu X, Chen F, Ren Q, Tang Y, Ding Q, Yang T (2020) Ultra-thin piezoelectric lattice for vibration suppression in pipe conveying fluid. Acta Mech Solida Sin 33: 770–780.
[13] Elvin NG, Elvin AA (2009) The flutter response of a piezoelectrically damped cantilever pipe. J Intel Mat Syst Str 20: 2017-2026.
[14] Abbasnejad B, Shabani R, Rezazadeh G (2015) Stability analysis of a piezoelectrically actuated micro‑pipe conveying fluid. Microfluid Nanofluid 19: 577–584.
[15] Mohammadimehr M, Mehrabi M (2018) Electro-thermo-mechanical vibration and stability analyses of double-bonded micro composite sandwich piezoelectric tubes conveying fluid flow. Appl Math Model 60: 255-272.
[16] Wang G, Shen J (2019) Flutter instabilities of cantilevered piezoelectric pipe conveying fluid. J Intel Mat Syst Str 30: 606-6017.
[17] Khajehpour S, Azadi V (2015) Vibration suppression of a rotating flexible cantilever pipe conveying fluid using piezoelectric layers. Lat Am J Solids Stru 12: 1042-1060.
[18] Pei YC, Sun YH, Wang JX (2013) Dynamics of rotating conveying mud drill string subjected to torque and longitudinal thrust. Meccanica 48: 2189-2201.
[19] Eftekhari M, Hosseini M (2016) On the stability of spinning functionally graded cantilevered pipes subjected to fluid-thermomechanical loading. Int J Struct Stab Dy 16: 1550062.
[20] Bahaadini R, Saidi AR (2018) Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment. Eur J Mech A-Solid 72: 298-309.
[21] Liang F, Yang XD, Qian YJ, Zhang W (2018) Transverse free vibration and stability analysis of spinning pipes conveying fluid. Int J Mech Sci 137: 195–204.
[22] Liang F, Yang XD, Zhang W, Qian YJ (2018) Dynamical modeling and free vibration analysis of spinning pipes conveying fluid with axial deployment. J. Sound Vib 417: 65-79.
[23] Liang F, Yang XD, Zhang W, Qian YJ (2019) Vibrations in 3D space of a spinning supported pipe exposed to internal and external annular flows. J Fluid Struct 87: 247–262.
[24] Abdollahi R, Firouz-abadi RD, Rahmanian M (2020) On the stability of rotating pipes conveying fluid in annular liquid medium. J. Sound Vib 494: 115891.
[25] Erturk A, Inman DJ (2011) Piezoelectric Energy Harvesting. John Wiley & Sons, Hoboken, N.J.
[26] Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130: 041002.
[27] Stanton SC, McGehee CC, Mann BP (2010) Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Physica D 239: 640-653.
[28] Timoshenko S, Young DH (1968) Elements of Strength of Materials. Van Nostrand Reinhold, New York.
[29] Benjamin TB (1961) Dynamics of a system of articulated pipes conveying fluid. I. Theory. Proc R Soc Lon Ser-A 261: 457–486.
[30] Wang G (2012) Analysis of bimorph piezoelectric beam energy harvesters using Timoshenko and Euler–Bernoulli beam theory. J Intel Mat Syst Str 24: 226-239.
[31] Meirovitch L (1997) Principles and techniques of vibrations. Prentice-Hall, Upper Saddle River, N.J.