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Abstract 
There are many engineering applications of pipes at different scales for conveying fluid. The dynamic characteristics of 

a spinning pipe conveying fluid in vertical configuration equipped with piezoelectric patches are analyzed in this study. 

Based on Euler–Bernoulli beam theory, the governing equations of the system are derived by applying Hamilton’s 

variational principle. In this equations, the gyroscopic coupling, electromechanical coupling and gravitational effects are 

considered. The Galerkin’s method is used to discretize the governing equations of motions. Numerical results are 

investigated to predict the influences of the piezoelectric layer spanning angle, spinning speed, pipe length and flow 

velocity, on the unbalance response of the system. The results indicate that, depending on excitation frequency, the 

vibration amplitude can be decreased or increased by increasing the piezoelectric layer spanning angle. The results of this 

research can be used to conduct piezoelectric pipe design and performance predictions for future pipe vibration control 

and energy harvesting applications. 
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1.  Introduction 

As a significant aspect of fluid-structure interaction 

(FSI), flow-induced vibrations of pipes conveying fluid 

have attracted much attention due to the wide 

applications of these pipes in various engineering 

fields, such as drug delivery, agriculture, heat 

exchangers and drill strings [1]. Numerous researches 

have been carried out on the vibrational behavior of 

pipes conveying fluid. 

Kheiri et al. [2] studied dynamics and stability of a 

pipe flexibly supported at its ends and conveying fluid. 

The results showed that there are ranges of support 

stiffness in which the critical flow velocity stays 

constant with changing the support stiffnesses. 

Pisarski et al. [3] proposed a mathematical model of 

a fluid-conveying pipe actuated by the 

electromechanical damper. They found that the 

combined effects of the additional mass and the 

viscous-type electromagnetic force can improve 

dynamic stability the cantilever pipe discharging fluid. 

Elvin and Elvin [4] investigated the dynamic 

stability of a cantilever pipe with attached piezoelectric 

resistive dampers. The results showed that a greater 

piezoelectric electromechanical coupling coefficient 

tends to increase the critical flutter speed due to the 

increased in electromechanical coupling stiffness. 

Abbasnejad et al. [5] analyzed the effect of applying 

piezoelectric layers on stability of the fluid conveying 

micro-pipes. They revealed that imposing voltage 

difference to piezoelectric layers can significantly 

suppress the effect of fluid flow on vibrational 

frequencies and thus extend the stable margins. 

Liang et al. [6] analyzed transverse free vibration 

and stability of spinning pipes conveying fluid. They 

reported that the qualitative stability of spinning pipes 

conveying fluid mainly depends on the effect of FSI, 

while the spinning speed has a great influence on the 

quantitative values of the frequency. 

From the review of literature, it is found that there 

is no previously published work presenting unbalance 

response of pipes conveying fluid that incorporates the 

spinning motion, the gyroscopic coupling of the 

nonplanar vibrations, the electromechanical coupling 

and the gravitational effects due to the vertical 

installation. Therefore, in this study the effects of 

different parameters on the frequency response of the 

vertically spinning cantilevered pipe conveying fluid 

with surface mounted piezoelectric layer are 

investigated. 

 

2. Formulation of the governing equations 

Figure 1 shows the model of a vertically spinning 

cantilevered pipe conveying fluid with surface mounted 

piezoelectric layer. The pipe has a uniform cross 
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section. The flow velocity U0 of the internal fluid is 

constant and the velocity profile is uniform.  
 

 
Figure 1. Schematic diagram of a vertically spinning 

cantilevered pipe conveying fluid with surface 

mounted piezoelectric layer. 

The pipe unbalance is purely static with radius e 

(Figure 2). The piezoelectric patch pair is bonded to the 

surface of the pipe at the top and the bottom of the z-

axis. The top and the bottom piezoelectric layer are 

connected in series with the same polarization. The 

electrical circuit of the piezoelectric layer consists of a 

resistive load R0. 

 

 
Figure 2. Cross section of the piezoelectric pipe 

with unbalance force 

 

By applying Hamilton’s variational principle and 

introducing the nondimensional parameters given in 

Table 1, the coupled nonlinear partial differential 

equations of motion are found to be 
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3. Galerkin’s discretization 

The Galerkin’s procedure based on the two mode 

approximation is employed for converting the partial 

differential equations to the ordinary differential 

equations. So, the deflection functions are 

approximated by the series 
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Substitution of Eqs. (4) and (5) into Eqs. (1)-(3), 

followed by multiplication by [Φ] and integration over 
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the domain (0, 1) yields 
 

(6) 

   

   

 

v 1 v 2 w

3 w 4 v

5

[ (t)] [ (t)] [ (t)]

   [ (t)] [ (t)]

   V(t) 0

q q q

q q

   

   

  

 

(7) 
   

   
w 1 w 2 v

3 v 4 w

[ (t)] [ (t)] [ (t)]

   [ (t)] [ (t)] 0

q q q

q q

   

    
 

(8)  5 v

V(t) V(t)
[ (t)] 0

t

Td
q

d R
      

 

For numerical analysis, it is convenient to transform 

Eqs. (6)-(8) into the first order differential equations as 
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The constant matrices [A], [B], [C], [D], [Г1], [Г2] 

… and [Г5] are defined in the Appendix. 

 

Table 1. Dimensionless parameters 

( , )
v(x, t)

v x t

L
  x

x

L
  

 
1

2

31 ( )
V(t)

2

pz

p p pz pz

e LI V t

E I E I



 ( , )

w(x, t)
w x t

L
  

 

   

1

2

2

0 31

1

24

pz

p p pz pz p f pz

R e I
R

L E I E I m m m



  

 2

1

2

2
t

p p pz pz

p f pz

E I E It

m m mL

 
  

   

 

f

p f pz

m
m

m m m


 
 

2

1

2

0

p f pz

p p pz pz

m m m
U U L

E I E I

  
  

  

 

 

2

3

0 p f pz

p p pz pz

g L m m m
g

E I E I

 



 

2

1

2
2

0

p f pz

p p pz pz

m m m
L

E I E I


  
   

  

 

 

   

1

2

2

0 31

1

24

pz

p p pz pz p f pz

R e I
R

L E I E I m m m



  

 
 

 
2

1

2

31

4 p p p pz pz

pz

C E I E I

L e I



  

 
 

2

3 2

p

p p pz pz

m L e
F

E I E I





 

 

4. Results and discussion 

In this section, the effects of some parameters on the 

vibration behavior of the spinning cantilevered 

piezoelectric pipe conveying fluid are inspected. Water 

is assumed as the fluid conveyed with a density of 1000 

kg/m3. The parameter values used in the analysis are 

presented in Table 2. 
Table 2. Physical parameters of the piezoelectric pipe. 

Parameter Piezoelectric Pipe 

Material PZT-5 H Rubber 

Density (kg/m3) 7500 1200 

Length (mm) 50 50 

Thickness (mm) 1 3.2 

Inner diameter (mm) - 12.7 

Young’s modulus (GPa) 60.6 0.4 

Piezoelectric constant (C/m2) -16.6 - 

Piezoelectric permittivity (nF/m) 25.55 - 

Spanning angle (rad) π/2 - 

Acceleration of gravity (m/s2) 9.81 9.81 

 

Figure 3 shows the non-dimensional frequency 

response of the system at various values of the flow 

velocity (U0=800, 1000, 3670, 4000 and 4300 mm/s) 

for θ=π/2 rad, L=50 mm and Ω0=100 rpm. Two 

resonance peaks are observed in the frequency response 

of the system. The flow velocity has a considerable 

effect on the vibration behavior of the system at low 

frequencies, whereas at high frequencies, the effect of 

the flow velocity on the vibration behavior of the 

system decreases. It is clear from Figure 3 that, when 

the flow velocity is lower than the critical speed 

(U0=3670 mm/s), increasing the amount of flow 

velocity reduces the amplitude of vibration and 

enhances the first natural frequency. When the flow 

velocity exceeds the critical value (U0=3670 mm/s), 

increasing the amount of flow velocity enhances the 

amplitude of vibration and reduces the first natural 

frequency. 
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Figure 3. Dimensionless frequency response of 

the vertically spinning piezoelectric pipe 

conveying fluid at different flow velocities for 

θ=π/2 rad, L=50 mm and Ω0=100 rpm 

 

Figure 4 depicts the non-dimensional frequency 

response of the system at various values of the spanning 

angle (θ= π/6, π/3 and π/2 rad) for U0=1000 mm/s, 

L=50 mm and Ω0=100 rpm. The results show that the 

natural frequencies increase with increase in the 

spanning angle. Also, at low frequencies, increasing the 

amount of spanning angle reduces the amplitude of 

vibration, whereas near the resonance frequencies, 

increasing the amount of spanning angle enhances the 

amplitude of vibration. 

 
Figure 4. Dimensionless frequency response of 

the vertically spinning piezoelectric pipe 

conveying fluid at different spanning angles for 

U0=1000 mm/s, L=50 mm and Ω0=100 rpm 

5. Conclusions 

Some important conclusions that can be drawn from 

this work are: 

 The first natural frequency can be enhanced by 

increasing the piezoelectric spanning angle. 

 Increasing the spanning angle do not always lead 

to the higher vibration amplitude, and depending 

on the value of the excitation frequency. 

 The first natural frequency can be increased (for 

subcritical flow velocities) or decreased (for 

supercritical flow velocities) by increasing the 

flow velocity. 

 

 

6. Appendix 

The constant matrices of Eqs. (6)- (10) are as follows: 
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