بررسی پاسخ گذرای حرارتی لوله موتور پالس دتونیشن تحت کارکرد متوالی

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران

چکیده

به منظور به کارگیری عملیاتی و طولانی مدت موتورهای پالس دتونیش، باید دما در لوله‌های دتونیشن کنترل شود. ماهیت دتونیشن از یک سو و تکرار سریع فرایندهای مختلف در یک سیکل کارکرد موتور همراه با تغییرات شدید دامنه سرعت، دما و فشار در داخل لوله، محیط حرارتی بسیار متفاوتی را با موتورهای متداول ایجاد می‌کند که تعیین و کنترل حرارت را دشوار می‌کند. در این مقاله ابتدا به بررسی فرایندهای مختلف یک سیکل از کارکرد موتور پرداخته و الگویی برای بارگذاری و شرایط مرزی حرارتی ارائه شده است. در ادامه مدلسازی عددی و تحلیلی مطابق فرضیات شرح داده شده ایجاد و پاسخ حرارتی لوله برای سیکل‌های پیاپی به دست آمده است. نرخ شدید تغییرات دما در جداره داخلی لوله و زمان بسیار کوتاه انفجار باعث افزایش حساسیت پاسخ به پارامترهای حل می‌شود که همگرایی پاسخ را تحت تاثیر قرار می‌دهد. صحت سنجی و دقت سنجی نتایج با مقایسه نتایج تحلیلی و عددی با یکدیگر و در نهایت مقایسه با نتایج تجربی گزارش شده انجام شده است. نتایج به دست آمده ضمن توصیف شرایط دمایی لوله دتونیشن و امکان طراحی کنترل حرارتی آن، برای سایر تحلیل‌های مرتبط با موتورهای پالس دتونیشن مانند تحلیل ترموالاستیک و خستگی حرارتی قابل استفاده است.

کلیدواژه‌ها

موضوعات


[1]  Wolański P (2013) Detonative propulsion. P Combust Inst 34: 125-158.
[2]  Kailasanath K (2000) Review of propulsion applications of detonation waves. AIAA J 38: 1698-1708.
[3]  Bussing T, Pappas G (1996) Pulse detonation engine theory and concepts. in Developments In High-Speed Vehicle Propulsion Systems, ed: American Institute of Aeronautics and Astronautics 421-472.
[4]  Bussing T, Pappas G (1994) An introduction to pulse detonation engines. in 32nd Aerospace Sciences Meeting and Exhibit, ed: American Institute of Aeronautics and Astronautics.
[5]  Kailasanath K (2003) Recent Developments in the Research on Pulse Detonation Engines. AIAA J 41: 145-159.
[6]  Mirzaei M, Torkaman Asadi MJ, Akbari R (2015) On vibrational behavior of pulse detonation engine tubes. Aerosp Sci Technol 47: 177-190.
[7]  Mirzaei M (2012) Vibrational response of thin tubes to sequential moving pressures. Int J Mech Sci 59: 44-54.
[8]  Bykovskii FA (1991) Thermal fluxes in combustion chamber walls in the detonation and turbulent combustion modes. Combust Explo Shock+ 27: 66-71.
[9]  Shmuel E, Dmitri S, David B (2000) Aerothermodynamics of pulsed detonation engines. in 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, ed: American Institute of Aeronautics and Astronautics.
[10] Eidelman S, Sharov D, Book D (2001) The thermal balance of PDE. Computational Methods and Experimental Measures 711-720.
[11] Kasahara J, Takazawa K, Arai T, Matsuo A (2002) Experimental study of impulse and heat transfer on pulse detonation engines. in 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, ed: American Institute of Aeronautics and Astronautics.
[12] Kasahara J, Takazawa K, Arai T, Tanahashi Y, Chiba S, Matsuo A (2002) Experimental investigations of momentum and heat transfer in pulse detonation engines. P Combust Inst 29: 2847-2854.
[13] Hoke J, Bradley R, Schauer F (2003) Heat transfer and thermal management in a pulsed detonation engine. in 41st Aerospace Sciences Meeting and Exhibit, ed: American Institute of Aeronautics and Astronautics.
[14] Kasahara J, Tanahashi Y, Hirano M, Numata T, Matsuo A, Endo T (2004) Experimental investigation of momentum and heat transfer in pulse detonation rockets. in 42nd AIAA Aerospace Sciences Meeting and Exhibit, ed: American Institute of Aeronautics and Astronautics.
[15] Kasahara J, Hasegawa A, Nemoto T, Yamaguchi H, Yajima T, Kojima T (2007) Thrust demonstration of a pulse detonation rocket "TODOROKI". in 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, ed: American Institute of Aeronautics and Astronautics.
[16] Takagi S, Morozumi T, Matsuoka K, Kasahara J, Matsuo A, Funaki I (2014) Study on pulse detonation rocket engine using flight test demonstrator "Todoroki II". in 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, ed: American Institute of Aeronautics and Astronautics.
[17] Ajmani K, Breisacher K (2004) Multi-cycle analysis of an ejector-cooled pulse detonation device. in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, ed: American Institute of Aeronautics and Astronautics.
[18] Ajmani K, Breisacher K, Ghosn L, Fox D (2005) Numerical and experimental studies of a film cooled pulsed detonation tube. in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, ed: American Institute of Aeronautics and Astronautics.
[19] Ghandikota RR (2008) Thermal analysis of pulse detonation engines. Master's Thesis, Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX.
[20] Kalidindi N (2009) Heat transfer analysis of a pulse detonation engine. Master's Thesis, Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX.
[21] Nagarajan HN, Lu FK (2009) Thermal analysis and heat exchanger design for pulse detonation engine. International Journal of Aerospace Innovations 1: 145-158.
[22] Zhou J, Deng Z, Hou X (2010) Transient thermal response in thick orthotropic hollow cylinders with finite length: High order shell theory. ACTA Mech Solida Sin 23: 156-166
[23] Zhou J, Deng Z, Xu D (2011) Dynamic response of prismatic metallic sandwich tubes under combined internal shock pressure and thermal load. Compos Struct 94: 166-176.
[24] Naples A, Hoke J, Schauer F (2010) Study of heat loads from steady deflagration and pulsed detonation combustion. in 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, ed: American Institute of Aeronautics and Astronautics.
[25] Paxson D, Naples A, Hoke J, Schauer F (2011) Numerical analysis of a pulse detonation cross flow heat load experiment. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.
[26] Fontenot DG (2011) Transient heat transfer properties in a pulse detonation combustor. Monterey, California. Naval Postgraduate School.
[27] Zhu D, Fox DS, Miller RA, Ghosn LJ, Kalluri S (2004) Effect of surface impulsive thermal loads on fatigue behavior of constant volume propulsion engine combustor materials. Surface and Coatings Technology 188: 13-19.
[28] Zhu D, Fox D, Miller R (2000) Laser high-cycle thermal fatigue of pulsed detonation engine combustor materials tested. Research and Technology 19-22.
[29] Ghosn L, Zhu D (2007) Thermal barrier             and protective coatings to improve the        durability of a combustor under a pulse      detonation engine environment. In  48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, ed: American Institute of Aeronautics and Astronautics.
[30] Sun Y, Zhang X (2015) Transient heat transfer of a hollow cylinder subjected to periodic boundary conditions. J Press Vess-T ASME 137: 051303-051303-10.
[31] Sun Y, Zhang X (2015) Heat transfer analysis of a circular pipe heated internally with a cyclic moving heat source. Int J Therm Sci 90: 279-289.
[32] Detonation wave structure. Available: http://www.aip.nagoya-u.ac.jp/unite/en/detail/0000114.html
[33] Özisik MN, Özısık MN, Özışık (1993) Heat conduction: John Wiley & Sons.
[34] Mackowski DW (2011) Conduction heat transfer: Notes for MECH 7210. Mechanical Engineering Department, Auburn University.
[35] Behera P (2009) Analysis of transient heat conduction in different geometries.