[1] Matsuo K, Miyazato Y, Kim HD (1999) Shock train and pseudo-shock phenomena in internal gas flows. Prog Aerosp Sci 35(1): 33-100.
[2] Kuo-Cheng L, Chung-Jen T, Dean E, Kevin J, Thomas J (2006) Effects of Temperature and heat transfer on shock train structures inside constant-area isolators. 44th AIAA Aerospace Sciences Meeting and Exhibit.
[3] Huang W, Wang ZG, Pourkashanian M, Ma L, Ingham DB, Luo SB, Derek B, Liu J (2011) Numerical investigation on the shock wave transition in a three-dimensional scramjet isolator. Acta Astronaut 68(11-12): 1669-1675
[4] Gawehn T, Gülhan A, Al-Hasan N, Schnerr G (2010) Experimental and numerical analysis of the structure of pseudo-shock systems in laval nozzles with parallel side walls. Shock Waves 20(4): 297-306.
[5] Grzona A, Olivier H (2011) Shock train generated turbulence inside a nozzle with a small opening angle. Exp Fluids 51(3): 621-639.
[6] Weiss A, Olivier H (2012) Behaviour of a shock train under the influence of boundary-layer suction by a normal slot. Exp Fluids 52(2): 273-287.
[7] Morgan B, Duraisamy K, Lele SK (2014) Large-eddy simulations of a normal shock train in a constant-area isolator. AIAA J 52(3): 539-558.
[8] Kanda T, Tani K (2007) Momentum balance model of flow field with pseudo-shock. 43rd AIAA Aerospace Sciences Meeting and Exhibit.
[9] Katanoda H, Matsuoka T, Matsuo K (2007) Experimental study on shock wave structures in constant-area passage of cold spray nozzle. J Therm Sci 16(1): 40-45.
[10] Jeffrey A, Thomas H, Tam C J (2007) Numerical simulations of a scramjet isolator using RANS and LES approaches. 45th AIAA Aerospace Sciences Meeting and Exhibit.
[11] Mousavi SM, Roohi E (2012) Evaluation of different turbulence models for simulation of shock train in a convergent-divergent nozzle. Paper presented at the First National Aerodynamics Hydrodynamics Conference, Institute of Aviation Industries Organization, Tehran, Iran.
[12] Mousavi SM, Roohi E (2013) Large eddy simulation of shock train in a convergent–divergent nozzle. Int J Mod Phys C 25(04): 1450003.
[13] Mousavi SM, Roohi E (2014) Three dimensional investigation of the shock train structure in a convergent–divergent nozzle. Acta Astronaut 105(1): 117-127.
[14] Kamali R, Mousavi SM, Binesh AR (2015) Three dimensional CFD investigation of shock train structure in a supersonic nozzle. Acta Astronaut 116: 56-67
[15] Kamali R, Mousavi SM, Khojasteh D (2016) Three-dimensional passive and active control methods of shock wave train physics in a duct. Int J Appl Mech 08: 1650047.
[16] یادگاری م، طالقانی س آ (1395) مطالعه پارامتری کنترل غیرفعال تداخل شوک و لایه مرزی بر ایرفویل با محفظه و سطح متخلخل در جریان گذر صوتی. مجله مکانیک سازهها و شارهها 284-271 :(2)6.
[17] Goshtasbi-Rad E, Mousavi SM (2015) Wall modeled large eddy simulation of supersonic flow physics over compression–expansion ramp. Acta Astronaut 117: 197-208
[18] Smirnov NN, Betelin VB, Shagaliev RM, Nikitin VF, Belyakov IM, Deryuguin YN, Aksenov SV, Korchazhkin DA (2014) Hydrogen fuel rocket engines simulation using LOGOS code. Int J Hydrogen Energ 39(20): 10748-10756.
[19] Weiss A, Grzona A, Olivier H (2010) Behavior of shock trains in a diverging duct. Exp Fluids 49: 355-365.
[20] Emmons HW (2015) Fundamentals of gas dynamics. Princeton University Pres.
[21] Ikui T, Matsuo K, Nagai M (1974) The mechanism of pseudo-shock waves. Bulletin of JSME 17: 731-739.
[22] Waltrup PJ and Billig FS. (1973) Structure of shock waves in cylindrical ducts. AIAA J 11: 1404-1408.
[23] Billig FS (1993) Research on supersonic combustion. J Propul Power 9: 499-514.
[24] Schlichting H (1979) Boundary-layer theory. McGraw-Hill, New York.