بررسی اثر نانو ذرات مختلف بر سرما‌درمانی با استفاده از مدل انتقال گرما غیر فوریه

نوع مقاله : مقاله مستقل

نویسندگان

1 کارشناس ارشد، مهندسی مکانیک، دانشگاه اصفهان، اصفهان

2 دانشیار، گروه مهندسی مکانیک، دانشگاه اصفهان،اصفهان

چکیده

جراحی با سرمایش یا انجماد، یک روش درمانی است که از آن برای از بین بردن بافت‌های نامطلوب و بدخیم در میان بافت‌ها و اعضای سالم استفاده می‌شود. با اضافه شدن نانو سیال به بخش بافت معیوب، می‌توان اثربخشی این روش را افزایش داد. در این پژوهش اثر نانو سیالات مختلف و غلظت آن‌ها در بافت بر انجماد و توزیع دما، مورد بررسی قرار خواهد گرفت. ابتدا تفاوت بین حالت فوریه و غیر فوریه معادله دما نشان داده شده است؛ برای بررسی اثر نانو سیال بر انجماد بافت از حالت غیر فوریه معادله دما استفاده شده است. از روش انتالپی برای حل معادلات دما با تغییر فاز استفاده خواهد شد. نتایج نشان می‌دهند که با اضافه شدن نانو سیال به بافت به دلیل افزایش در مقدار ضریب رسانایی گرمایی، پیشروی سرمایش بیشتر شده و در زمان یکسان، دمای هر نقطه نسبت به حالت بدون نانو سیال مقدار کمتری دارد. همچنین تزریق نانو سیال منجر به افزایش نرخ سرمایش (افزایش بیش از 40 درصد با تزریق نانو سیال Ag) و درنتیجه افزایش آسیب به تومور می‌شود. همچنین نشان داده شده است که هر چه ضریب رسانایی گرمایی نانو ذرات و یا غلظت نانو ذرات در بافت بیشتر باشد، دمای بافت پایین‌تر آمده، نرخ سرمایش بیشتر شده و در نتیجه آسیب بیشتری به تومور وارد می‌شود.

کلیدواژه‌ها

موضوعات


[1] Yang B, Wan RG, Muldrew KB, Donnelly BJ (2008) A finite element model for cryosurgery with coupled phase change and thermal stress aspects. Finite Elem Anal Des 44(5): 288-297.
[2] Jiji LM, Ganatos P (2009) Approximate analytical solution for one-dimensional tissue freezing around cylindrical cryoprobes. Int J Therm Sci 48(3): 547-553.
[3] Deng ZS, Liu J (2004) Modeling of multidimensional freezing problem during cryosurgery by the dual reciprocity boundary element method. Eng Anal Bound Elem 28(2): 97-108.
[4] Chua KJ, Chou SK, Ho JC (2007) An analytical study on the thermal effects of cryosurgery on selective cell destruction. J Biomech 40(1): 100-116.
[5] Zhao X, Chua KJ (2014) Studying the performance of bifurcate cryoprobes based on shape factor of cryoablative zones. Cryobiology 68(3): 309-317.
[6] Chua KJ (2011) Computer simulations on multiprobe freezing of irregularly shaped tumors. Comput Biol Med 41(7): 493-505.
[7] Yan JF, Liu J, Zhou YX (2006) Infrared image to evaluate the selective (directional) freezing due to localized injection of thermally important solutions. In Engineering in Medicine and Biology Society, 27th Annual International Conference of the IEEE 3559-3562.
[8] Yu TH, Liu J, Zhou YX (2005) Selective freezing of target biological tissues after injection of solutions with specific thermal properties. Cryobiology 50(2): 174-182.
[9] Chester M (1963) Second sound in solids. Phys Rev 131(5): 2013-2015.
[10]  Yu Q, Zhao G, Ding W, June GD (2013) Effect of vascular network on conventional cryosurgery and nano-cryosurgery. In ASME 2013 Summer Bioengineering Conference.
[11] Yan JF, Liu J (2008) Characterization of the nanocryosurgical freezing process through modifying Mazur’s model. J Appl Phys 103(8): 084311.
[12] Di DR, He ZZ, Sun ZQ, Liu J (2012) A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomed: Nanotech Biol Med 8(8): 1233-1241.
[13] Deng ZS, Liu J (2005) Numerical simulation of selective freezing of target biological tissues following injection of solutions with specific thermal properties. Cryobiology 50(2): 183-192.
[14] Yan JF, Liu J (2008) Nanocryosurgery and its mechanisms for enhancing freezing efficiency of tumor tissues. Nanomed Nanotech Biol Med 4(1): 79-87.
[15] Liu J, Deng ZS (2009) Nano-cryosurgery: Advances and challenges. J Nanosci Nanotech 9(8): 4521-4542.
[16] KJ Chua (2013) Fundamental experiments and numerical investigation of cryo-freezing incorporating vascular network with enhanced nano-freezing. Int J Therm Sci 70 17-31.
[17] J Shi, Z Chen, M Shi (2009) Simulation of heat transfer of biological tissue during cryosurgery based on vascular trees. Appl Therm Eng 29(8): 1792-1798.
 [18] Kazimi MS, Erdman CA (1975) On the interface temperature of two suddenly contacting materials. ASME J Heat Trans 97(4): 615-617.
[19] Rastegar JS (1989) Hyperbolic heat conduction in pulsed laser irradiation of tissue. in: Berry MJ, Harpole GM (Eds.) Thermal and Optical Interactions with Biological and Related Composite Materials. Proc SPIE 1064: 114-117.
[20] Mitra K, Kumar S, Vedavarz A, Moallemi MK (1995) Experimental evidence of hyperbolic heat conduction in processed meat. ASME J Heat Trans 117(3): 568-573.
 [21] Xu F, Seffen KA, Lu TJ (2008) Non-Fourier analysis of skin biothermomechanics. Int J Heat Mass Trans 51(9): 2237-2259.
[22] Wang  Z,  Wu  H,  Zhao  G  (2006) One-dimensional  finite-difference  modeling  on temperature  history  and  freezing  time  of  individual  food. J Food Eng 79: 502-510.
[23] Swaminathan CR, Voller VR (1992) A general enthalpy method for modeling solidification processes. Metall Trans B 23(5): 651-664.
[24] Levin ML, Miller MA (1981) Maxwell a treatise on electricity and magnetism. Usp Fiz Nauk 135(3): 425-440.
[25] Wang Z, Wu H, Zhao G, Liao X, Chen F, Wu J, Hu X (2007) One-dimensional finite-difference modeling on temperature history and freezing time of individual food.J Food Eng 79(2): 502-510.
[26] Ahmadikia H, Moradi A (2012) Non-Fourier phase change heat transfer in biological tissues during solidification. Heat Mass Trans 48(9): 1559-1568.
[27] Xu F, Lub TJ, Seffen KA (2007) Non-Fourier Analysis of Skin Biothermomechanics. Int J Heat Mass Trans 51: 2237-2259.
[28] Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra H, Schmidt H, Deger S, Loening S, Lanksch W, Felix R (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyper-thermia. J Magn Magn Mater 225: 118-126.