[1] Mirzaali M, Seyedkashi SMH, Liaghat GH, Moslemi Naeini H, Shojaee K, Moon YH (2012) Application of simulated annealing method to pressure and force loading optimization in tube hydroforming process. Int J Mech Sci 55(1): 78-84.
[2] Aydemir A, de Vree JHP, Brekelmans WAM, Geers MGD, Sillekens WH, Werkhoven RJ (2005) An adaptive simulation approach designed for tube hydroforming processes. J Mater Process Technol 159(3): 303-310.
[3] Hartl C (2005) Research and advances in fundamentals and industrial applications of hydroforming. J Mater Process Technol 167(2-3): 383-392.
[4] Seyedkashi SH, Panahizadeh V, Xu H, Kim S, Moon YH (2013) Process analysis of two-layered tube hydroforming with analytical and experimental verification. J Mech Sci Technol 27(1): 169-175.
[5] Liu F, Zheng J, Xu P, Xu M, Zhu G (2004) Forming mechanism of double-layered tubes by internal hydraulic expansion. Int J Pres Ves Pip 81(7): 625-633.
[6] Islam M, Olabi A, Hashmi M (2006) Feasibility of multi-layered tubular components forming by hydroforming and finite element simulation. J Mater Process Technol 174(1): 394-398.
[7] Payganeh G, Shahbazi J, Malekzadeh K (2013) Finite element comparison of single, bi-layered and three-layered tube hydroforming processes. Jcarme 2(2): 69-80.
[8] Alaswad A, Olabi A, Benyounis K (2011) Integration of finite element analysis and design of experiments to analyse the geometrical factors in bi-layered tube hydroforming. Mater Des 32(2): 838-850.
[9] Seyedkashi S, Liaghat GH, Naeini HM, Mahdavian S, Hoseinpour Gollo M (2009) Numerical and experimental study of two-layered tube forming by hydroforming process. Proc Trans Tech Publ 102-107.
[10] Hoseinipour SJ, Kargar Pishbijari H, Shahbazi Karami J (2016) Experimental Comparison of the Formability of Single-layer Aluminium Tubes and two-layer Copper-Aluminium Tubes in the Hot Gas Blow Forming Prosess. SME 2(2): 36-46.
[11] Abedrabbo N, Worswick M, Mayer R, van Riemsdijk I (2009) Optimization methods for the tube hydroforming process applied to advanced high-strength steels with experimental verification. J Mater Process Technol 209(1): 110-123.
[12] Intarakumthornchai T, Aue-U-Lan Y, Kesvarakul R, Jirathearanat S (2015) Feasible pressure and axial feed path determination for fuel filler tube hydroforming by genetic algorithm. P I Mech Eng B-J Eng 229(4): 623-630.
[13] Teng B, Li K, Yuan S (2013) Optimization of loading path in hydroforming T-shape using fuzzy control algorithm. Int J Adv Manuf Tech 69(5-8): 1079-1086.
[14] Mirzaali M, Liaghat GH, Naeini HM, Seyedkashi SMH, Shojaee K (2011) Optimization of Tube Hydroforming Process Using Simulated Annealing Algorithm. Procedia Eng 10(0): 3012-3019.
[15] Yong Z, Chan LC, Chunguang W, Pei W (2009) Optimization for Loading Paths of Tube Hydroforming Using a Hybrid Method. Mater Manuf Process 24(6): 700-708.
[16] Huang T, Song X, Liu X (2016) The multi-objective robust optimization of the loading path in the T-shape tube hydroforming based on dual response surface model. Int J Adv Manuf Tech 82(9):1595-1605.
[17] Ge Yl, Li Xx, Lang Lh, Ruan Sw (2017) Optimized design of tube hydroforming loading path using multi-objective differential evolution. Int J Adv Manuf Tech 88(1): 837-846.
[18] Clerc M (2010) Particle swarm optimization. John Wiley & Sons.
[19] Rao SS, Rao S (2009) Engineering optimization: theory and practice. John Wiley & Sons.
[20] Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evolut Comput 6(1): 58-73.
[21] Aue-U-Lan YY, Ngaile GG, Altan TT (2004) Optimizing tube hydroforming using process simulation and experimental verification. J Mater Process Technol 146(1): 137-143.
[22] Socha K, Dorigo M (2008) Ant colony optimization for continuous domains. Eur J Oper Res 185(3): 1155-1173.