[1] Manikandan KS, Kumaresan G, Velraj R, Iniyan S (2012) Parametric study of solar parabolic trough collector system. Asian J Appl Sci Eng 5(6): 384-393.
[2] Choudhury A, Nargund A (2011) State variable model of a solar power system. Trends Appl Sci Res 6(6): 563.
[3] Tyagi H, Phelan P, Prasher R (2009) Predicted efficiency of a lowtemperature nanofluid-based direct absorption solar collector. J Sol Energ-T ASME 131(4): 041004.
[4] Otanicar TP, Phelan PE, Prasher RS, Rosengarten G, Taylor RA (2010) Nanofluid-based direct absorption solar collector. IJRSE 2(3): 033102.
[5] Liu J, Ye Z, Zhang L, Fang X, Zhang Z (2015) A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector. Sol Energ Mat Sol C 136: 177-186.
[6] Luo Z, Wang C, Wei W, Xiao G, Ni M (2014) Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts. Int J Heat Mass Tran 75: 262-271.
[7] Parvin S, Nasrin R, Alim M (2014) Heat transfer and entropy generation through nanofluid filled direct absorption solar collector. Int J Heat Mass Tran 71: 386-395.
[8] Bandarra Filho EP, Mendoza OSH, Beicker CLL, Menezes A, Wen D (2014) Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energ Convers Manage 84: 261-267.
[9] Karami M, Akhavan-Bahabadi M, Delfani S, Raisee M (2015) Experimental investigation of CuO nanofluid-based Direct Absorption Solar Collector for residential applications. Renew Sust Energ Rev 52: 793-801.
[10] Karami M, Raisee M, Delfani S (2014) Numerical investigation of nanofluid-based solar collectors. IOP Conference Series Materials Science and Engineering 64(1): 012044.
[11] Gupta HK, Agrawal GD, Mathur J (2015) An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector. Sol Energy 118: 390- 396.
[12] Lenert A, Wang EN (2012) Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol Energy 86(1): 253-265.
[13] Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer 11(2): 151-170.
[14] O'Hanley H, Buongiorno J, McKrell T, Hu LW (2012) Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Adv Mech Eng 4: 181079.
[15] Oster G, Wasserman M, Zwerling C (1964) Theoretical interpretation of moiré patterns. JOSA 54(2): 169-175.
[16] Brinkman H (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 2(4): 571-571.
[17] Lee SH, Jang SP (2013) Extinction coefficient of aqueous nanofluids containing multi-walled carbon nanotubes. Int J Heat Mass Tran 67: 930-935.
[18] Karami M, Akhavan-Behabadi M, Dehkordi MR, Delfani S (2016) Thermo-optical properties of copper oxide nanofluids for direct absorption of solar radiation. Sol Energ Mat Sol C 144: 136-142.