[1] Toms BA (1949) Observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. Proceedings of the International Rheological Congress (General and Physical Chemistry) 2: 135-141.
[2] Housiadas KD, Beris AN (2005) Direct numerical simulations of viscoelastic turbulent channel flows at high drag reduction. Korea-Aust Rheol J 17(3): 131-140.
[3] Sureshkumar R, Beris AN, Handler RA (1997) Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys Fluids 9: 743-755.
[4] Beris AN, Dimitropoulos CD (1999) Pseudospectral simulation of turbulent viscoelastic channel flow. Comput. Methods Appl Mech Engrg 180: 365-392.
[5] Yu B, Kawaguchi Y (2003) Effect of Weissenberg number on the flow structure: DNS study of drag-reducing fluid with surfactant additives. Int J Heat Fluid Fl 24: 491-499.
[6] Yu B, Kawaguchi Y (2004) Direct numerical simulation of viscoelastic drag-reducing flow: a faithful finite difference method. J Non-Newton Fluid 116: 431-466.
[7] Yu B, Li F, Kawaguchi Y (2004) Numerical and experimental investigation of turbulent characteristics in a drag-reducing flow with surfactant additives. Int J Heat Fluid Fl 25: 961-974.
[8] Housiadas KD, Beris AN (2004) An efficient fully implicit spectral scheme for DNS of turbulent viscoelastic channel flow. J Non-Newton Fluid 122: 243-262.
[9] Housiadas KD, Beris AN (2006) Extensional behavior influence on viscoelastic turbulent channel flow. J Non-Newton Fluid 140: 41-56.
[10] Li CF, Sureshkumar R, Khomami B (2006) Influence of rheological parameters on polymer induced turbulent drag reduction. J Non-Newton Fluid 140: 23-40.
[11] Yu B, Kawaguchi Y (2006) Parametric study of surfactant-induced drag-reduction by DNS. Int J Heat Fluid Fl 27: 887-894.
[12] Housiadas KD, Wang L, Beris AN (2010) A new method preserving the positive definiteness of a second order tensor variable in flow simulations with application to viscoelastic turbulence. Comput Fluid 39: 225-241.
[13] Ohta T, Usui Y, Yasoshima H (2012) Predicting drag-reducing wall turbulence of surfactant solution by direct numerical simulation. JFST 7(3): 259-274.
[14] Thais L, Gatski TB, Mompean G (2012) Some dynamical features of the turbulent flow of a viscoelastic fluid for reduced drag. J Turbul 13(19): 1-26.
[15] Graham MD (2014) Drag reduction and the dynamics of turbulence in simple and complex fluids. Physic Fluid 26: 101301.
[16] موسائی الف (1393) توسعه روش میدانهای تصادفی برای شبیهسازی عددی مستقیم کاهش درگ با میکروفیبر در جریان کانال آشفته. ماهنامه علمی پژوهشی مهندسی مکانیک مدرس 82-75 :(4)14.
[17] Kawamura H (2010) DNS database of wall turbulence and heat transfer. Tokyo University of Science. http://murasun.me.noda.tus.ac.jp/turbulence/.
[18] Pinho FT (2003) A GNF framework for turbulent flow models of drag reducing fluids and proposal for a k–ε type closure. J Non-Newton Fluid 114: 149-184.
[19] Cruz DOA, Pinho FT, Resende PR (2004) Modelling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J Non-Newton Fluid 121: 127-141.
[20] Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of Polymeric Liquids. 2nd edn. John Wiley & Sons Inc., New York.
[21] Favero JL, Secchi AR, Cardozo NSM, Jasak H (2010) Viscoelastic flow analysis using software OpenFOAM and differential constitutive equations. J Non-Newton Fluid 165: 1625-1636.
[22] Van Haren SW (2011) Testing DNS capability of OpenFOAM and STAR-CCM+. M.Sc. Thesis, Delft University of Technology.
[23] Dean RB (1978) Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J Fluid Eng-T Asme 100: 215-223.
[24] Jiang X, Lai CH (2009) Numerical Techniques for Direct and Large-Eddy Simulations. CRC Press/Taylor & Francis Ltd., Boca Raton.
[25] Virk PS (1971) An elastic sublayer model for drag reduction by dilute solutions of linear macromolecules. J Fluid Mech 45: 417-440.
[26] Chhabra RP, Richardson JF (2008) Non–Newtonian Flow and Applied Rheology. 2nd edn. IChemE., New York.