[1] Godunov SK (1959) A difference scheme for numerical computation of discontinuous solutions of hydrodynamic equations. Math Sbornic, English translation in U.S joint publications 47: 271-306.
[2] Harten A (1977) The artificial compression method for computation of shocks and contact discontinuities. I. single conservation laws. Commun Pur Appl Math 30: 611-637.
[3] Harten A (1978) The artificial compression method for computation of shocks and contact discontinuities. III. Self-Adjusting hybrid schemes. Math Comput 32(142): 363-389.
[4] Roe PL (1981) Approximate riemann solvers, parameter vectors and difference schemes. J Comput Phys 43: 357-372.
[5] Jameson A, Schmidt W, Turkel E(1981) Numerical solutions of the euler equations by finite-volume methods using runge-kutta time-stepping schemes. AIAA 81-1259.
[6] Harten A (1983) High resolution scheme for Hyperbolic conservation laws. J Comput Phys 49(3): 357-393.
[7] Harten A (1984) On a class of high resolution total variation stable finite difference schemes. SIAM J 21(1): 1-23.
[8] Colella P, Woodward PR (1984) The piecewise Parabolic method (PPM) for gas dynamical simulations. J Comput Phys 54: 174-201.
[9] Yee HC, Warming RF, Harten A(1985), Implicit total variation diminishing (TVD) schemes for steady state calculations. J Comput Phys 57(2): 327-360.
[10] Mulder WA,Van Leer B (1985) Experiments with implicit upwind methods for the euler equations. J Comput Phys 59: 232-246.
[11] Montagne JL, Yee HC, Vinokur M (1987) Comparative study of high-resolution shock-capturing schemes for a real gas. AIAA 27(19): 1332-1346.
[12] Arnone A ,Swanson RC (1988) A navier-stokes solver for cascade flows. NASA CR 181682, ICASE Report No. 88-32.
[13] Hirsch C (1990) Numerical computation of internal and external flows. John Wiley & Sons.
[14] Lin H, Chieng CC (1991) Characteristic-based flux limiters of an essentially third-order flux- splitting method for hyperbolic conservation laws. Int J Numer Meth Fl 13(3): 287-307.
[15] Turkel E, Radespiel R, Kroll N(1997) Assessment of preconditioning methods for multidimensional aerodynamics. Comput Fluids 26(6): 613-634.
[16] Yee HC, Sandham ND, Djomeri MJ (1999) Low dissipative High-order shock-capturing methods using characteristic-based filters. J Comput Phys 150: 199-238.
[17] Duru V, Tenaud C (2001) Evaluation of TVD high resolution schemes for unsteady viscous shocked flows. Comput Fluids 30: 89-113.
[18] Javareshkian MH (2001) The role of limiter based on characteristic variable annual. ISME Conference. thcheme, 8Sith TVD.
[19] Rossow CC (2003) A blended pressure/density Based method for the computation of incompressible and compressible flows. J Comput Phys 185(2): 375-398.
[20] Lie KA, Noelle S (2003) On the artificial compression method for second-order non- oscillatory central difference schemes for systems of conservation laws. Siam J Sci Comput 24(4): 1157-1174.
[21] Zamzamian K, Razavi SE(2008) Multidimen sional upwinding for incompressible flows based on characteristics. J Comput Phys 227(19): 8699-8713.
[22] Ohwada T, Asinari P(2010) Artifical compressibility method revisited: Asymptotic numerical method for incompressible Navier-Stokes equations. J Comput Phys 229: 1698-1723.
[23] Nguyen VT, Nguyen HH, price MA, Tan JK (2012) Shock capturing schemes with local mesh adaptation for high speed compressible flows on three dimensional unstructured grids. Comput Fluids 70: 126- 135.
[24] Isoia D, Guardone A, Quaranta G(2015) Finite-volume solution of two-dimensional compressible flows over dynamic adaptive grids. J Comput Phys 285: 1-23.
[25] اردکانی م ع (1388) تونل باد با سرعت پایین، اصول طراحی و کاربرد. انتشارات دانشگاه صنعتی خواجه نصیرالدین طوسی