[1] Nguyen NT, Wereley ST (2002) Fundamentals and applications of microfluidics. Artech House.
[2] Hung LH, Lee AP (2007) Microfluidic devices for the synthesis of nanoparticles and biomaterials. J Med Biol Eng 27(1): 1-6.
[3] Capretto L, Cheng W, Hill M, Zhang X (2011) Micromixing within microfluidic devices. Microfluidics Springer, Berlin Heidelberg, 27-68.
[4] Lee CY, Chang CL, Wang YN, Fu LM (2011) Microfluidic mixing: a review. INT J MOL Sci 12(5): 3263-3287.
[5] Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1(3): 82-111.
[6] Lewis PC, Graham RR, Nie ZH, Xu SQ, Seo M, Kumacheva E (2005) Continuous synthesis of copolymer particles in microfluidic reactors. Macromolecules 38(10): 4536-4538.
[7] Nie ZH, Xu SQ, Seo M, Lewis PC, Kumacheva E (2005) Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J Am Chem Soc 127(22): 8058-8063.
[8] Nisisako T, Torii T, Higuchi T (2004) Novel microreactors for functional polymer beads. Chem Eng J 101(1): 23-29.
[9] Seo M, Nie ZH, Xu SQ, Mok M, Lewis PC (2005) Continuous microfluidic reactors for polymer particles. Langmuir 21(25): 11614-11622.
[10] Jensen K, Lee A (2004) The science and applications of droplets in microfluidic devices—Foreword. Lab Chip 4(1): 31-32.
[11] Jeong WJ, Kim JY, Choo J, Lee EK (2005) Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems. Langmuir 21(9): 3738-3741.
[12] Li W, Nie ZH, Zhang H, Paquet C, Seo M, Garstecki P, Kumacheva E (2007) Screening of the effect of surface energy of microchan- nels on microfluidic emulsification. Langmuir 23(15): 8010-8014.
[13] Sugiura S, Nakajima M, Itou H, Seki M (2001) Synthesis of polymeric microspheres with narrow size distributions employing microchan- nel emulsification. Macromol Rapid Comm 22(10): 773-778.
[14] Sugiura S, Nakajima M, Seki M (2002) Effect of channel structure on microchannel emulsification. Langmuir 18(15): 5708-5712.
[15] Sugiura S, Nakajima M, Seki M (2002) Prediction of droplet diameter for microchannel emulsification. Langmuir 18(10): 3854-3859.
[16] Tan YC, Cristini V, Lee AP (2006) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Actuators B 114(1): 350-356.
[17] Ward T, Faivre M, Abkarian M, Stone HA (2005) Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate driven pumping. Electrophoresis 26(19): 3716-3724.
[18] Nakano M (2000) Places of emulsions in drug delivery. Adv Drug Deliver Rev 45(1): 1-4.
[19] Kang L, Chung BG, Langer R, Khademhosseini A (2008) Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discov Today 13(1): 1-13.
[20] Li XJ, Zhou Y (2013) Microfluidic devices for biomedical applications. Elsevier.
[21] Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437(7050): 648-655.
[22] Becher P (1965) Emulsions: Theory and Practice. Reinhold. New York.
[23] Sebba F (1987) Foams and Biliquid Foams-Aphrons. John Wiley & Sons, Chichester.
[24] Leal-Calderon F (2007) Emulsion Science: Basic Principles. Springer Verlag, New York.
[25] Schramm LL (2005) Emulsions, Foams and Suspensions: Fundamentals and Applications. Wiley-VCH, Weinheim.
[26] Tuncer Degim I, Çelebi N (2007) Controlled delivery of peptides and proteins. Curr Pharm Design 13(1): 99-117.
[27] Davis SS, Walker IM (1987) Multiple emulsions as targetable delivery systems. Method Enzymol 149(1): 51-64.
[28] Vasiljevic D, Parojcic J, Primorac M, Vuleta G (2006) An investigation into the characteristics and drug release properties of multiple W/O/W emulsion systems containing low concentration of lipophilic polymeric emulsifier. International journal of pharmaceutics 309(1): 171-177.
[29] Huang JS, Varadaraj R (1996) "Colloid and interface science in the oil industry. Curr Opin Colloid In 1(4): 535-539.
[30] Muschiolik G (2007) Multiple emulsions for food use. Current Opinion in Colloid & Interface Science 12(4): 213-220.
[31] Leal-Calderon F, Thivilliers F, Schmitt V (2007) Structured emulsions. . Curr Opin Colloid In 12(4): 206-212.
[32] Ouyang Y, Mansell RS & Rhue RD (1995) Emulsion mediated transport of nonaqueous phase liquid in porous media: A review. Crit Rev Env Sci Tec 25(3): 269-290.
[33] De Menech M, Garstecki P, Jousse F, Stone HA (2007) Transition from squeezing to dripping in a microfluidic T-shaped junction. Fluid Mech 595(1): 141-162.
[34] Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction scaling and mechanism of break up. Lab an a Chip 6(3): 437-446.
[35] Utada AS, Chu LY, Fernandez-Nieves A, Link DR, Holtze C, Weitz DA (2007) Dripping, jetting, drops, and wetting: the magic of microfluidics. Mrs Bulletin 32(9): 702-708
[36] Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS (2008) Designer emulsions using microfluidics. Materials Today 11(4): 18-27.
[37] Vladisavljević GT, Henry JV, Duncanson WJ, Shum HC, Weitz DA (2012) Fabrication of biodegradable poly (lactic acid) particles in flow-focusing glass capillary devices. UK Colloids 139(1): 111-114.
[38] Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using flow focusing in microchannels. Appl Phys Lett 82(3): 364-366.
[39] Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5): 054503_1-4.
[40] Gu H, Duits MH, Mugele F (2011) Droplets formation and merging in two-phase flow microfluidics. INT J MOL Sci 12(4): 2572-2597.
[41] Li Z, Leshansky AM, Pismen LM, Tabeling P (2015) Step-emulsification in a microfluidic device. Lab on a Chip 15(4): 1023-1031.
[42] Nunes JK, Tsai SSH, Wan J, Stone HA (2013) Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. J Phys D Appl Phys 46(11): 1-20.
[43] EunáKim Y, SunáLee K, HyunáLee S, WookáOh K, YoonáKang J (2011) Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid. Lab on a Chip 11(2): 246-252.
[44] Chandorkar A, Palit S (2009) Simulation of droplet dynamics and mixing in microfluidic devices using a VOF-based method. Sens Transducers J 7(1): 136-149.
[45] Conchouso D, Al Rawashdeh E, Castro D, Arevalo A, Foulds IG (2013) Optimized Channel Geometry of a Flow-Focusing Droplet Generator for Parallelization. In COMSOL Conference Proceeding.
[46] Hashim U, Diyana PNA, Adam T (2012) Numerical simulation of microfluidic devices. J Appl Sci Research 8(4): 26-29.
[47] Afkhami S, Leshansky AM, Renardy Y (2011) Numerical investigation of elongated drops in a microfluidic T-junction. Phys Fluids 23(2): 022002_1-14.
[48] جمشیداصلی د، عباسی ع (1392) شبیهسازی عددی دوفازی جریان و انتقال حرارت نانوسیالها در میکروچاه حرارتی با استفاده از مدل مخلوط همگن. مجله مکانیک سازهها و شارهها 3(2): 51-63.
[49] تقیپور ع، کریمیپور آ (1394) شبیهسازی انتقال حرارت جابجایی نانوسیال متشکله از آب و نانو لوله کربنی در ریزکانال تحت میدان مغناطیسی در رژیم جریان لغزشی. مجله مکانیک سازهها و شارهها 5(3): 209-222.
[50] Lee J, Lee W, Son G (2013) Numerical study of droplet breakup and merging in a microfluidic channel. Journal of Mechanical Science and Technology 27(6): 1693-1699.
[51] ادیبی پ، انصاری مر (1394 هـ. ش.) شبیهسازی عددی جریان دوفازی گاز-مایع در کانال افقی طویل و تعیین فرکانس اسلاگ با استفاده از مدل دوسیالی. مجله مهندسی مکانیک شریف، 3(2): 67-77.
[52] Abrishamkar A, Rane AS, Elvira KS, Wootton RCR, Sainio TA (2013) COMSOL Multiphysics Model of Droplet Formation at a Flow Focusing Device. In COMSOL Conference Proceeding.
[53] Multiphysics COMSOL manual, (1998-2013) "Introduction to the CFD Module User’s Guide" COPYRIGHT COMSOL AB, Version COMSOL 4.3b.
[54] Olsson E, Kreiss G (2005) A conservative level set method for two phase flow I. J Comput Phys 210(1): 225-246.
[55] Olsson E, Kreiss G, Zahedi S (2007) A conservative level set method for two phase flow II. J Comput Phys 225(1): 785-807.
[56] Nie Z, Seo M, Xu S, Lewis PC, Mok M, Kumacheva E, George M. Whitesides GM, Garstecki P, Stone HA (2008) Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluid Nanofluid 5(5): 585-594.