[1] Tang DW, Araki N (1996) Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance. International J Heat Mass Trans 39(8): 1585-1590.
[2] Zhang MY, Cheng GJ (2011) Pulsed laser coating of hydroxyapatite/titanium nanoparticles on Ti-6Al-4V substrate: Multiphysics simulation and experiments. IEEE Trans NanoBiosci 99: 1-1.
[3] Maurer MJ, Thompson HA (1973) Non-Fourier effects at high heat flux. J. Heat Trans 95: 284-286.
[4] Cattaneo C (1958) Sur une forme de l’equation de la chaleur eliminant le paradoxe d’ine propagation instantanee. Comptes Rendus de l’ Academie des Sciences Serie IIa:Sciences de la Terre et des Planets 247: 431-433.
[5] Vernotte P (1958) Les paradoxes de la theorie continue de l’equation de la chaleu. Comptes Rendus de l’ Academie des Sciences Serie IIa:Sciences de la Terre et des Planets 246: 3154-3155.
[6] Sevostianov I, Kachanov M (2000) Anisotropic conductivities of plasma sprayed thermal barrier coatings in relation to the microstructure. J Thermal Spray Tech 9(4): 478-482.
[7] Nied HF, Erdogan F (1983) Transient thermal stress problem for a circumferentially cracked hollow cylinder. J Thermal Stresses 6: 1-14.
[8] Nied HF (1984) Thermal shock in a circumferentially cracked hollow cylinder with cladding. Eng Fract Mech 20:113-137.
[9] Zahoor A (1985) Closed form expressions for fracture mechanics analysis of cracked pipes. ASME J Press Ves Tech 107: 203-205.
[10] Miyamoto H, Kikuchi M (1986) The behavior of cracks under thermal transient loading. Eng Fract Mech 23(1): 37-60.
[11] Grebner H (1985) Finite element calculation of stress intensity factors for complete circumferential surface cracks at the outer wall of a pipe. Int J Fract 27: R99-R102.
[12] Chen YZ (2000) Stress intensity factors in a finite length cylinder with a circumferential crack. Int J Press Ves Pip 77: 439-444.
[13] Torabi M, Saedodin S (2011) Analytical and numerical solutions of hyperbolic heat conduction in cylindrical coordinates. J Thermophys Heat Transfer 25(2): 239-253.
[14] Nabavi SM, Ghajar R (2010) Analysis of thermal stress intensity factors for cracked cylinders using weight function method. Int J Eng Sci 48: 1811–1823.
[15] Meshii T, Watanabe K (1998) Closed-form stress intensity factor for an arbitrarily located inner circumferential surface crack in a cylinder subjected to axisymmetric bending loads. Eng Fract Mech 59: 589-597.
[16] Meshii T, Watanabe K (2001) Stress intensity factor for a circumferential crack in a finite-length thin to thick-walled cylinder under an arbitrary biquadratic stress distribution on the crack surfaces. Eng Fract Mech 68: 975-986.
[17] Petroski HJ, Achenbach JD (1978) Computation of the weight function from a stress intensity factor. Eng Fract Mech 10: 257-266.
[18] Ghajar R, Nabavi SM (2010) Closed-form thermal stress intensity factors for an internal circumferential crack in a thick-walleded cylinder. Fatigue Fract Eng Mater 33: 504-512.
[19] Chang DM, Wang BL (2012) Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction. Eng Fract Mech 94: 29-36.
[20] Hu KQ, Chen ZT (2012) Thermoelastic analysis of a partially insulated crack in a strip under thermal impact loading using the hyperbolic heat conduction theory. Int J Eng Sci51: 144-160.