[1] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: Cad, finite elements, NURBS, exact geometry and mesh refinement,Comput. Meth Appl Mech Engrg 194(39–41): 4135–195.
[2] Hassani B, Ganjali A, Tavakkoli SM (2012) An isogeometrical approach to error estimation and stress recovery. Eur J Mech 31: 101-109.
[3] Peraire J, Vahdati M, Morgan K, Zienkiewicz OC (1987) Adaptive remeshing for compressible flow computations. J Comp Phys 72(2):449-466.
[4] Gyi W, Babuska I (1986) The h, p and h-p version of the finite element method in one dimention: Part 1: The error analysis of the p version. Part 2: The error analysis of the h and h-p version. Part 3: The adaptive h-p version. Numerische Math 48: 577-683.
[5] Zienkiewicz OC, Zhu Z (1989) Error estimates and adaptive refinement for plate bending problems. Int J Numer Meth Eng 28: 2839-2853.
[6] Kjetil AJ (2009) An adaptive isogeometric finite element Analysis. M.S. thesis, Norwegian University of Science and Technology.
[7] Michael RD, Bert J, Bernd S (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199: 264-275.
[8] Ping W, Jinlan X, Jiansong D, Falai C (2011) Adaptive isogeometric analysis using rational PHT-splines. Comput Aided Design 43 :1438-1448.
[9] Piegl L, Tiller W (1997) The NURBS book (monographs in visual communication). 2nd edn. Springer-Verlag, New York.
[10] Timoshenko SP, Goodier JN (1977) Theory of Elasticity. McGraw-Hill, New York.
[11] Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The Finite Element Method. 6th edn. Elsevier Butterworth - Heinemann.
[12] Haber R, Shephard MS, Abel JF, Gallagher RH, Greenberg DP (1981) A general two-dimensional graphical finite-element preprocessor utilizing discrete transfinite mappings. Int J Numer Meth Eng 17: 1015.
[13] Zienkiewicz OC, Philips DV (1971)An automatic mesh generation scheme for plane and curved surfaces by isoparametric coordinates. Int J Numer Meth Eng 3: 519.
[14] Bar-Yoseph PZ, Mereu S, Chippada S, Kalro VJ (2001) Automatic monitoring of element shape quality in 2-D and 3-D computational mesh dynamics. Comput Mech 27: 378.
[15] Zeng D, Ethier CR (2005) A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains. Finite Elem Anal Des 41: 1118–1139.
[16] George PL, Borouchaki H (1998) Delaunay triangulation and meshing: application to finite elements. HERMES, Paris.
[17] Doorfel MR, Juttler B, Simeon B, (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199(5-8): 264-275.
[18] Sadd MH (2005) ELASTICITY: theory, applications, and numerics. Elsevier Butterworth–Heinemann.