[1] Kroto HW, Heath JR, O'Brien SC, Cur RF, Smalley E (1985) C60: Buckminsterfullerene. Nature 318(14): 162–163.
[2] Lijima S (1991) Helical microtubules of graphitic carbon. Nature 354(4): 56–58.
[3] Esawi AMK, Farag MM (2007) Carbon nanotube reinforced composites: Potential and current challenges. Mater Design 28(9): 2394–2401.
[4] Ruoff RS, Qian D, Liu WK (2003) Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C. R. Physique 4(9): 993–2003.
[5] Thostenson ET, Ren ZH, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol Composites Science and Technology 16(13): 1899–1912.
[6] Griebel M, Hamaekers J (2004) Molecular Dynamics Simulations of the Elastic Moduli of Polymer–Carbon Nanotube Composites. Comput Meyhod Appl M 193(17): 1773–1788.
[7] Han Y, Elliott J (2007) Molecular Dynamics Simulations of the Elastic Properties of Polymer/Carbon Nanotube Composites. Comp Mater Sci 39(2): 315–323.
[8] Zhang CL, Shen HS, (2006) Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation. Appl Phys Lett 89(8): 81904–81909.
[9] Meo M, Rossi M, (2006) Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos Sci Technol 66(11): 1597–1605.
[10] Fidelus JD, Wiesel E, Gojny FH, Schulte K, Wagner HD (2005) Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites Part A: Composites Part A 36(11): 1555–1561.
[11] Sun CH, Li F, Cheng HM, Lu GQ (2005) Axial Young’s modulus prediction of single-walled carbon nanotube arrays with diameters from nanometer to meter scales. Appl Phys Lett 87(19): 1555–1561.
[12] Ming Li, Kang ZH, Yang P, Meng X, Lu Y (2013) Molecular dynamics study on carbon/epoxy buckling of single-wall carbon nanotube- based intramolecular junctions and influence factors. Comp Mater Sci 67(15): 390–396.
[13] Zhang CH-L, Shen HS (2006) Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation. Carbon 44(13): 2608–2616.
]14[ گلمکانی م الف، رضاطلب ج (۱۳۹۲) تحلیل الاستیک نانوصفحه گرافن تک لایه در محیط الاستیک، بر اساس مدلهای غیر موضعی محیط پیوسته. مکانیک سازهها و شارهها ۳(۳): ۵۳-۶۳.
[15] Vodenitcharova T, Zhang LC (2006) Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube. Int J Solids Struct 43(10): 3006–3024.
[16] Shen HS (2009) Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct 19(1): 9–19.
[17] Shen HS, Zhang LC (2010) Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater Design 31(7): 3403–3411.
[18] Wang ZX, Shen HS (2011) Nonlinear vibration of nanotube-reinforced comp osite plates in thermal environments. Comp Mater Sci 50(8): 2319–2330.
[19] Shen HS (2011) Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells. Compos Struct93(8): 2096–2108.
[20] Shen HS (2011) Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part II: Pressure-loaded shells. Compos Struct93(10): 2496–2503.
[21] Shen HS (2012) Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells. Compos Part B-Eng 43(3): 1030–1038.
[22] Shen HS, Xiang Y (2012) Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Comput. Methods Appl. Mech. Engrg 213(216): 196–205.
[23] Zhu P, Lei ZX, Liew KM (2012) Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos Struct94(4): 1450–1460.
[24] Jafari Mehrabadi S, Sobhani Aragh B, Khoshkhahesh V, Taherpour A (2012) Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes Compos Part B-Eng 43(4): 2031–2040.
[25] Sobhani Aragh B, Nasrollah Barati AH, Hedayati H (2012) Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Compos Part B-Eng 43(4): 1943–1954.
[26] Ke LL, Yang J, Kitipornchai S (2010) Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct 92(3): 676–683.
[27] Yas MH, Heshmati M (2012) Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Appl Math Model 36(4): 1371–1394.
[28] Wang ZX, Shen HS (2012) Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments. Nonlinear Dynam 70(1): 1371–1394.
[29] Alibeigloo A (2012) Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity. Compos Struct95: 612–622.
[30] Lei ZX, Leiw KM, Yu JK (2013) Large deflection analysis of functionally graded carbon nanotubereinforced composite plates by the element-free kp-Ritz methodComput. Methods Appl. Mech. Engrg 256: 189–199.
[31] Shen HS, Zhu ZH (2012) Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations. Eur J Mech A-Solid 35(4): 10–21.
[32] Wang ZH, Shen HS (2012) Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos Part B-Eng 43(2): 411–421.
[33] Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press London New York Washington. 132–137.
[34] Rezaee Pajand M, Alamatian J (2010) The Dynamic relaxation method using new formulation for fictitious mass and damping. Struct Eng Mech 34(1): 109–133.
[35] Zhang LC, Kadkhodayan M, Mai YW (1994) Development of the maDR method. Comput Struct 52(1): 1–8.
[36] Underwood P (1983) Dynamic relaxation, in computational method for transient analysis. 245–265.
[37] Golmakani ME, Kadkhodayan M (2011) Nonlinear bending analysis of annular FGM plates using higher-order shear deformation plate theories. Compos Struct 93(2): 973–982.
[38] Levy S (1942) Bending of rectangular plates with large deflections. Naca-Tr 846: 501–512.
[39] Yamaki N (1961) Influence of large amplitudes on flexural vibrations of elastic plates. ZAMM 41(12): 501–512.