[1] Olusanya, A. (1997). A criterion of tensile failure for Hyperelastic materials and its application to viscoelastic-viscoplastic materials. NPL Report CMMT (B), 130.
[2] Volokh, K. Y. (2007). Hyperelasticity with softening for modeling materials failure. J. Mech. Phys. Sol., 55(10), 2237-2264.
[3] Nair, A. U., Lobo, H., & Bestelmeyer, A. M. (2009). Characterization of damage in hyperelastic materials using standard test methods and abaqus. In 2009 simulia customer conference (Vol. 15).
[4] Volokh, K. Y. (2010). On modeling failure of rubber-like materials. Mechanics Research Communications, 37(8), 684-689.
[5] Volokh, K. Y. (2011). Modeling failure of soft anisotropic materials with application to arteries. J. mech. Behave. Biomed. materials, 4(8), 1582-1594.
[6] Cao, J., Ding, X. F., Yin, Z. N., & Xiao, H. (2017). Large elastic deformations of soft solids up to failure: new hyperelastic models with error estimation. Acta Mechanica, 228, 1165-1175.
[7] Schmandt, C., & Marzi, S. (2018). Effect of crack opening velocity and adhesive layer thickness on the fracture behaviour of hyperelastic adhesive joints subjected to mode I loading. Int. J. Adh. Adhesives, 83, 9-14.
[8] Rosendahl, P. L., Drass, M., Schneider, J., & Becker, W. (2018). Crack nucleation in hyperelastic adhesive bonds. ce/papers, 2(5-6), 409-425.
[9] Rosendahl, P. L., Drass, M., Felger, J., Schneider, J., & Becker, W. (2019). Equivalent strain failure criterion for multiaxially loaded incompressible hyperelastic elastomers. Int. J. Solid Struct., 166, 32-46.
[10] Russ, J., Slesarenko, V., Rudykh, S., & Waisman, H. (2020). Rupture of 3D-printed hyperelastic composites: Experiments and phase field fracture modeling. J. Mech. Phys. Solid., 140, 103941.
[11] Rosendahl, P. L. (2021). From bulk to structural failure: fracture of hyperelastic materials. Springer Vieweg.
[12] Rosendahl, P. L., Rheinschmidt, F., & Schneider, J. (2022). Structural bonding with hyperelastic adhesives: Material characterization, structural analysis and failure prediction. In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems (pp. 281-282). CRC Press.
[13] Zochowski, P., Cegła, M., Szczurowski, K., Mączak, J., Bajkowski, M., Bednarczyk, E., ... & Prasuła, P. (2023). Experimental and numerical study on failure mechanisms of the 7.62× 25 mm FMJ projectile and hyperelastic target material during ballistic impact. Continuum Mechanics and Thermodynamics, 35(4), 1745-1767.
]14[ مائده حاج هاشم خانی، محمدرحیم همتیان (1396) شناسایی شرایط مرزی در مسائل تغییر فرم مواد هایپرالاستیک، مجله مهندسی مکانیک امیرکبیر، (49)2، 261.
[15] Hajhashemkhani, M., Hematiyan, M. R., Khosrowpour, E., & Goenezen, S. (2020). A novel method for the identification of the unloaded configuration of a deformed hyperelastic body. Inverse Problems in Science and Engineering, 28(10), 1493-1512.
[16] Xu, T., Li, M., Wang, Z., Hu, Y., Du, S., & Lei, Y. (2022). A method for determining elastic constants and boundary conditions of three-dimensional hyperelastic materials. Int. J. Mech.l Sci., 225, 107329.
[17] Bower, A. F. (2009). Applied mechanics of solids. CRC press.
[18] Holzapfel, G.A. (2000) Nonlinear Solid Mechanics: A Continuum Approach for Engineering. 1st Edition, John Wiley & Sons Ltd., Chichester.
[19] Neff, P., Eidel, B., & Martin, R. J. (2016). Geometry of logarithmic strain measures in solid mechanics. Archive for Rational Mechanics and Analysis, 222, 507-572.
[20] Chen, W. F., & Zhang, H. (1991). Structural plasticity: theory, problems, and CAE software (Vol. 2). New York: Springer-Verlag.
[21] Lode, W. (1926). Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel. Zeitschrift für Physik, 36(11-12), 913-939.
[22] Podgórski, J. (1985). General failure criterion for isotropic media. J. eng. Mech., 111(2), 188-201.
[23] Bigoni, D., & Piccolroaz, A. (2004). Yield criteria for quasibrittle and frictional materials. Int. J. solid struct., 41(11-12), 2855-2878.
[24] Arora, J. S. (2004). Introduction to optimum design. Elsevier.