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Abstract  
In recent years, analysis of inverse hyperelastic problems has received more attention than before. In this article, an 

inverse problem related to the failure of hyperelastic bodies is defined and two different methods are proposed to solve 

the problem. The inverse analysis of hyperelastic bodies that have failed can be useful to prevent the recurrence of failure 

in these materials. In the inverse problem, it is assumed that a two-dimensional hyperelastic solid is failed and the place 

of its failure is known. The distribution of the load (boundary conditions) in a part of the boundary is considered unknown 

and is calculated by solving the inverse problem. By defining an appropriate objective function, the inverse problem is 

converted to an unconstrained optimization problem. To solve the optimization problem, a zero-order method based on 

the equal interval search method and a first-order method based on the steepest descent method are used. To make the 

problem more practical, the inverse problem input data, which are the location of failure and the critical equivalent strain, 

are used with some error. It is observed that the performance of the first-order method is better than the zero-order method. 
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1.  Introduction 

In the mechanical analysis of hyperelastic materials, both 

the material behavior and the deformation of the material 

are nonlinear. Optimization and inverse analysis of 

hyperelastic materials can help to improve some industrial 

equipment and can be useful in biomechanics fields such 

as heart valve construction, soft tissue repair, and 

prosthesis manufacturing. One of the most important 

properties of hyperelastic materials is that, they 

experience very large elastic strains under small stresses. 

Due to the non-linear behavior of hyperelastic materials, 

these materials do not obey Hooke's law, and for their 

analysis, large elastic deformation theories should be used. 

So far, many studies have been conducted on the 

identification and modeling of hyperelastic materials. In 

1997, Olusanya [1] presented a measurement method for 

the tensile failure of hyperelastic materials and extended it 

to viscoelastic and viscoplastic materials. He used strain 

energy density function of a specific material at seven 

different temperatures and after drawing several graphs, 

he obtained the relationship between failure energy and 

temperature. Volokh [2] presented a model for the failure 

of rubber-like materials and suggested a new failure 

potential function. Moreover, in 2011 Volokh [3] 

continued his research on the failure of hyperelastic 

materials and modeled the failure of soft non-isotropic 

materials. In another research conducted in 2020 by 

Hajhashemkhani et al. [4], a new inverse method was 

presented to identify the initial configuration of a 

deformed hyperelastic body using the finite element 

method. Recently, Zochowski et al. [5], in order to analyze 

the energy absorption and dissipation capabilities of 

hyperelastic materials, conducted experimental and 

numerical studies on the failure mechanisms of 

hyperelastic materials under impact loads.  

According to previous investigations, it can be seen 

that extensive research has been carried out on 

hyperelastic materials and various inverse problems have 

been presented regarding the identification of material 

parameters and boundary conditions of hyperelastic 

materials. However, to the authors’ best knowledge, no 

work on identification of the failure loads of hyperelastic 

members is presented. In this work, a zero-order method 

based on the equal interval search method and a first-order 

method based on the steepest descent method are 

presented to solve this new kind of inverse problem. 

2. Methodology 

In this research, a homogenous and isotropic hyperelastic 

body is considered and it is assumed that, a failure has 
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occurred at a known location of the body due to the 

application of a static load. The supports of the body, the 

material properties, and the location of the applied load are 

also known, but the distribution of the applied load that 

caused the failure is completely or partially unknown. The 

load is modeled in terms of two parameters ( 1 2 and q q ), 

which are the unknowns of the inverse problem. We 

consider the unknown parameters expressing the load in 

the form of the column matrix q as follows:
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By defining a suitable objective function, the inverse 

problem is converted to an unconstrained optimization 

problem. For this purpose, the following two-part 

objective function is considered: 
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The first part in the above equation is related to the 

location of the failure and the second part is related to the 

critical equivalent strain that occurs at the point of failure. 

We consider the coordinates of the failure point as 

),( ff yx , which is known, and we indicate the 

coordinates of the critical point with ( , )c cx y . c  is the 

value of eq  at the critical point, which is calculated by 

the software at each step, and f  is the amount of 

equivalent strain that causes failure, and its value is 

known. The coefficient   in Eq. (2) expresses the weight 

of the function 2g  compared to 1g . 

To solve the defined optimization problem, a zero-

order method based on the equal interval search method 

and a first-order method based on the steepest descent 

method are used. When the zero-order method with the 

objective function given in Eq. (2) is used, the 

convergence process is slow and sometimes convergence 

to the solution does not occur. Therefore, the optimization 

problem is converted into two one-dimensional 

optimization problems. 

There are many search methods to find the optimum 

point of a function. One of the simplest methods is the 

equal interval search method [6], which is used in this 

work. 

The problem is also solved using a first-order 

optimization method. In a gradient-based (first-order) 

method, as the name suggests, the gradient and the 

derivative of the objective function is used to solve the 

optimization problem. The gradient-based method, which 

is used in this work, is the steepest descent method [6]. 

 

3. Discussion and Results  

We consider a square hyperelastic pate with a corner cut-

out under plane stress condition as shown in Figure 1. The 

dimensions of the plate and the radius of the quarter circle 

are as follows: 

(3) m 5.0OBOD

    
 

(4) m 2.0OF      
 

 
Figure 1. A hyperelastic plate with a corner cut-out 

 

 

We consider a uniform vertical displacement for the 

upper edge DC and a horizontal displacement with linear 

variation for the right edge as follows: 

(5) m 1.0DCv

    
 

(6) m 02.01  Cuq      
(7) m 12.02  Buq      

After analyzing the direct problem using the ANSYS 

software [7] and performing the necessary calculations to 

determine the equivalent strain at all the nodes by the 

MATLAB software, it can be seen that the maximum 

equivalent strain with the value of 0.5214 occurs at point 

F with coordinates (0.1541, 0.1275). These values are 

considered as the input data for the inverse problem, which 

is defined as follows: 

In the plate shown in Figure 1, the material and 

boundary conditions on all edges except the edge BC are 

known (as before). The displacement of the edge BC is 

assumed horizontal with unknown linear variation.  The 

location of failure is (0.1541, 0.1275) and the failure 

equivalent strain is 0.5214. The unknowns of the inverse 
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problem, i.e. Bu  and Cu , are considered as 1q  and 2q , 

respectively. 

In order to make the research more practical, the input 

data of the inverse problem, which are the location of the 

failure and the failure equivalent strain, are used with 

some error. The obtained results can be seen in Tables 1 

and 2. 

 

Table 1. The results of the zero-order method with a 

measurement error of 3.5% in the coordinates of the failure 

location and 2% in the value of f  

initial 

guess 

Bu

)(m  

initial 

guess 

Cu

)(m
 

The 

total 

number 

of steps  

Bu

)(m
 

Cu

)(m
 

1g

 

2g

   

0
.1

4
 

0
.0

4
 

6
8

 

0
.1

1
0

2
 

0
.0

1
1

2
 

0
 

1
.5
3
1
8

×
1
0
−
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Table 2. The results of the gradient-based method with a 

measurement error of 3.5% in the coordinates of the failure 

location and 2% in the value of f  

initial 

guess 

Bu

)(m  

initial 

guess 

Cu

)(m
 

The 

total 

number 

of steps  

 

Bu

)(m

 

Cu

)(m

 

1g

 

2g

 

0
.1

4
 

0
.0

4
 

1
5

 

0
.1

1
0

9
 

0
.0

2
8

5
 

1
.0
1
1

×
1
0
−
3 

3
.4
4
7

×
1
0
−
5 

 

The results obtained from the zero-order method and 

the first-order method show that both methods have the 

ability to identify the unknown boundary condition. The 

accuracy of both methods is of the same order, but the 

number of steps required to solve the problem by the first-

order method is less than that in the zero-order method. 

 

4. Conclusions 

In this article, an inverse method for determining the 

failure load of hyperelastic bodies using the location of the 

failure was presented. According to the presented 

examples, it could be seen that both the zero-order and 

first-order methods have the ability to solve the considered 

problem, but the performance of the first-order method is 

much better than the zero-order method. 

In general, it can be seen that the gradient-based 

method, despite the fact that the equations used in it are 

more complicated than the zero-order method, gives 

relatively better results in a shorter time, and this means 

that in solving the inverse problem of this research, the 

gradient-based method is recommended. 
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