[1] American Cancer Society (2014) Cancer facts and figures (2014). American Cancer Society Inc, Atlanta, USA.
[2] Abbas AK, Lichtman AH (2010) Basic immunology: functions and disorders of the immune system. 3rd edn. Elsevier - Health Sciences Division, Philadelphia, USA.
[3] Swierniak A, Kimmel M, Smieja J (2009) Mathematical modeling as a tool for planning anticancer therapy. Eur J Pharmacol 625: 108–121.
[4] Shi J, Alagoz O, Erenay FS, Su Q (2011) A survey of optimization models on cancer chemotherapy treatment planning. Ann Oper Res 10: 1–26.
[5] Itik M, Salamci MU, Banks SP (2010) SDRE optimal control of drug administration in cancer treatment. Turk J Electr Eng Co 18: 715–729.
[6] Batmani Y, Khaloozadeh H (2012) Optimal chemotherapy in cancer treatment: state dependent Riccati equation control and extended Kalman filter. Optim Contr Appl Met 34: 562–577.
[7] Ledzewicz U, Naghnaeian M, Schättler H (2012) Optimal response to chemotherapy for a mathematical model of tumor–immune dynamics. J Math Biol 64: 557–577.
[8] Ledzewicz U, Marriott J, Maurer H, Schättler H (2010) Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment. Math Med Biol 27: 157–179.
[9] D’Onofrio A (2005) A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences. Physica D 208(3–4): 220–235.
[10] Swierniak A, Ledzewicz U, Schättler H (2003) Optimal control for a class of compartmental models in cancer chemotherapy. Int J Appl Math Comput Sci 13: 357–368.
[11] Ledzewicz U, Naghnaeian M, Schättler H (2011a) An optimal control approach to cancer treatment under immunological activity. Appl Math 38(1): 17–31.
[12] Ledzewicz U, Naghnaeian M, Schättler H (2011b) Dynamics of tumor–immune interactions under treatment as an optimal control problem. Discret Contin Dyn S: 971–980.
[13] Moradi H, Vossoughi G, Salarieh H (2013) Optimal robust control of drug delivery in cancer chemotherapy: A comparison between three control approaches. Comput Meth Prog Bio 112: 69–83.
[14] Zeng ZJ, Li JH, Zhang YJ, Zhao ST (2013) Optimal combination of radiotherapy and endocrine drugs in breast cancer treatment. Cancer Radiother 17(3): 208–214. doi:10.1016/j. canrad.2013.01.014.
[15] Ghaffari A, Naserifar N (2010) Optimal therapeutic protocols in cancer immunotherapy. Comput Biol Med 40(3): 261–270.
[16] Bertuzzi A, Bruni C, Papa F, Sinisgalli C (2012) Optimal solution for a cancer radiotherapy problem. J Math Biol 66(1-2): 311–349.
[17] Noble S, Sherer E, Hannemann R, Ramkrishna D, Vik T, Rundell A (2010) Using adaptive model predictive control to customize maintenance therapy chemotherapeutic dosing for childhood acute lymphoblastic leukemia. J Theor Biol 264: 990–1002.
[18] Engelhart M, Lebiedz D, Sager S (2010) Optimal control of selected chemotherapy ODE models: a view on the potential of optimal schedules and choice of objective function. Math Biosci 229: 123–134.
[19] Nazari S, Basirzade H (2014) Natural killer or t-lymphocyte Cells: which is the best immune therapeutic agent for cancer? An Optimal Control Approach. Int J Control Autom 12(1): 84–92.
[20] Kumar V, Cotran RS, Robbins SL (2003) Robbins basic pathology. 7th edn. W.B. Saunders Co, Philadelphia, USA.
[21] Klein CA, Hölzel D (2006) Systemic cancer progression and tumor dormancy: mathematical models meet signal cell genomics. Cell Cycle 5(15): 1788–1798.
[22] Ghaffari A, Khazaee M (2012) Cancer dynamics for identical twin brothers. Theor Biol Med Model 9: 1–13.
[23] De Pillis LG, Gu W, Radunskaya AE (2006) Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J Theor Biol 238: 841–862.
[24] Ghaffari A, Nazari M, Arab F (2014) Suboptimal mixed vaccine and chemotherapy in finite duration cancer treatment: State dependent riccati equation control. J Braz Soc Mech Sci. doi:10.1007/s40430-014-0172-9.
[25] Ghaffari A, Nazari M, Arab F (2014) Optimal finite cancer treatment duration by using mixed vaccine therapy and chemotherapy: state dependent Riccati equation control. J appl Math. doi:10.1155/2014/363109.
[26] Ghaffari A, Nazari M, Bahmaie B, Khazaee M (2014) How finite duration inputs are able to change the dynamics of a system: Application to finite duration cancer treatment. Paper presented at the ISME, Shahid Chamran University, Ahvaz, Iran.
[27] Cushing JM (1977) Integro differential Equations and Delay Models in Population Dynamics. Springer-Verlag Berlin Heidelberg New York. doi:10.1007/978-3-642-93073-7.
[28] Freedman HI, Pinho STR (2009) Stability criteria for the cure state in a cancer model with radiation. Nonlinear Anal-Theor 10: 2709–2715.
[29] Sachs RK, Hlatky LR, Hahnfeldt P (2001) Simple ODE models of tumor growth and anti-angiogenic or radiation treatment. Math Comput Model 33: 1297–1305.
[30] We X, Guo C (2010) Global existence for a mathematical model of the immune response to cancer. Nonlinear Anal-Theor 11(5): 3903–3911. doi:10.1016/j.nonrwa.2010.02.017.
[31] Hirata Y, Bruchovsky N, Aihara K (2010) Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer. J Theor Biol 264: 517–527.
[32] Kuang Y, Nagy JD, Elser JJ (2004) Biological stoichiometry of tumor dynamics: mathematical models and analysis. Dyn Contin Discret I 4(1): 221–240.
[33] Heng HHQ, Stevens JB, Bremer SW, Ye KJ, Liu G, Ye CJ (2010) The evolutionary mechanism of cancer. J Cell Biochem 109(6): 1072–1084.