تغییر در دینامیک یک سیستم با استفاده از ورودی های زمان محدود: کاربرد در درمان و مدلسازی سرطان

نوع مقاله : مقاله مستقل

نویسندگان

1 استاد مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 دانشجوی دکتری مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

3 دانشجوی دکتری مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

4 کارشناس ارشد مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

در این مقاله، یک مدل ریاضی جدید جهت نمایش اندرکنش بین سلول­های سالم و سرطانی در داخل بدن، ارائه می­گردد. برای این هدف، اثر ورودی بر روی دینامیک یک سیستم مورد بررسی قرار می­گیرد. سوال این است که اگر یک ورودی که تنها برای یک دوره محدود زمانی، به یک سیستم دینامیکی اعمال می­شود، قادر به تغییر در مشخصه­های دینامیکی سیستم می­باشد؟؛ بطوریکه رفتار سیستم آزاد، پس از حذف ورودی، متفاوت با رفتار سیستم آزاد قبل از اعمال آن ورودی باشد. نشان داده شده است که غیرخطی بودن سیستم، یک شرط لازم برای تغییر دینامیک آن سیستم با ورودی اعمالی در زمان محدود است. بر مبنای نتایج، پروتکل شتابی بهترین پروتکل رادیودرمانی می­باشد. همچنین، پس از اتمام رادیودرمانی، بیمار بهبودی کامل خود را بازمی­یابد و سرطان به دلیل اصلاح دینامیک آن با استفاده از ورودی، قادر به بازگشت نمی­باشد. از این رو، تحلیل حاضر پیشنهاد می­کند که یک روش درمانی مناسب باید دینامیک مدل سرطان را نیز، علاوه بر کاهش تعداد سلول­های سرطانی، اصلاح نماید.

کلیدواژه‌ها

موضوعات


[1] American Cancer Society (2014) Cancer facts and figures (2014). American Cancer Society Inc, Atlanta, USA.
[2] Abbas AK, Lichtman AH (2010) Basic immunology: functions and disorders of the immune system. 3rd edn. Elsevier - Health Sciences Division, Philadelphia, USA.
[3] Swierniak A, Kimmel M, Smieja J (2009) Mathematical modeling as a tool for planning anticancer therapy. Eur J Pharmacol 625: 108–121.
[4] Shi J, Alagoz O, Erenay FS, Su Q (2011) A survey of optimization models on cancer chemotherapy treatment planning. Ann Oper Res 10: 1–26.
[5] Itik M, Salamci MU, Banks SP (2010) SDRE optimal control of drug administration in cancer treatment. Turk J Electr Eng Co 18: 715–729.
[6] Batmani Y, Khaloozadeh H (2012) Optimal chemotherapy in cancer treatment: state dependent Riccati equation control and extended Kalman filter. Optim Contr Appl Met 34: 562–577.
[7] Ledzewicz U, Naghnaeian M, Schättler H (2012) Optimal response to chemotherapy for a mathematical model of tumor–immune dynamics. J Math Biol 64: 557–577.
[8] Ledzewicz U, Marriott J, Maurer H, Schättler H (2010) Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment. Math Med Biol 27: 157–179.
[9] D’Onofrio A (2005) A general framework for modeling tumor-immune system competition and immunotherapy: mathematical analysis and biomedical inferences. Physica D 208(3–4): 220–235.
[10] Swierniak A, Ledzewicz U, Schättler H (2003) Optimal control for a class of compartmental models in cancer chemotherapy. Int J Appl Math Comput Sci 13: 357–368.
[11] Ledzewicz U, Naghnaeian M, Schättler H (2011a) An optimal control approach to cancer treatment under immunological activity. Appl Math 38(1): 17–31.
[12] Ledzewicz U, Naghnaeian M, Schättler H (2011b) Dynamics of tumor–immune interactions under treatment as an optimal control problem. Discret Contin Dyn S: 971–980.
[13] Moradi H, Vossoughi G, Salarieh H (2013) Optimal robust control of drug delivery in cancer chemotherapy: A comparison between three control approaches. Comput Meth Prog Bio 112: 69–83.
[14] Zeng ZJ, Li JH, Zhang YJ, Zhao ST (2013) Optimal combination of radiotherapy and endocrine drugs in breast cancer treatment. Cancer Radiother 17(3): 208–214. doi:10.1016/j. canrad.2013.01.014.
[15] Ghaffari A, Naserifar N (2010) Optimal therapeutic protocols in cancer immunotherapy. Comput Biol Med 40(3): 261–270.
[16] Bertuzzi A, Bruni C, Papa F, Sinisgalli C (2012) Optimal solution for a cancer radiotherapy problem. J Math Biol 66(1-2): 311–349.
[17] Noble S, Sherer E, Hannemann R, Ramkrishna D, Vik T, Rundell A (2010) Using adaptive model predictive control to customize maintenance therapy chemotherapeutic dosing for childhood acute lymphoblastic leukemia. J Theor Biol 264: 990–1002.
[18] Engelhart M, Lebiedz D, Sager S (2010) Optimal control of selected chemotherapy ODE models: a view on the potential of optimal schedules and choice of objective function. Math Biosci 229: 123–134.
[19] Nazari S, Basirzade H (2014) Natural killer or t-lymphocyte Cells: which is the best immune therapeutic agent for cancer? An Optimal Control Approach. Int J Control Autom 12(1): 84–92.
[20] Kumar V, Cotran RS, Robbins SL (2003) Robbins basic pathology. 7th edn. W.B. Saunders Co, Philadelphia, USA.
[21] Klein CA, Hölzel D (2006) Systemic cancer progression and tumor dormancy: mathematical models meet signal cell genomics. Cell Cycle 5(15): 1788–1798.
[22] Ghaffari A, Khazaee M (2012) Cancer dynamics for identical twin brothers. Theor Biol Med Model 9: 1–13.
[23] De Pillis LG, Gu W, Radunskaya AE (2006) Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J Theor Biol 238: 841–862.
[24] Ghaffari A, Nazari M, Arab F (2014) Suboptimal mixed vaccine and chemotherapy in finite duration cancer treatment: State dependent riccati equation control. J Braz Soc Mech Sci. doi:10.1007/s40430-014-0172-9.
[25] Ghaffari A, Nazari M, Arab F (2014) Optimal finite cancer treatment duration by using mixed vaccine therapy and chemotherapy: state dependent Riccati equation control. J appl Math. doi:10.1155/2014/363109.
[26] Ghaffari A, Nazari M, Bahmaie B, Khazaee M (2014) How finite duration inputs are able to change the dynamics of a system: Application to finite duration cancer treatment. Paper presented at the ISME, Shahid Chamran University, Ahvaz, Iran.
[27] Cushing JM (1977) Integro differential Equations and Delay Models in Population Dynamics. Springer-Verlag Berlin Heidelberg New York. doi:10.1007/978-3-642-93073-7.
[28] Freedman HI, Pinho STR (2009) Stability criteria for the cure state in a cancer model with radiation. Nonlinear Anal-Theor 10: 2709–2715.
[29] Sachs RK, Hlatky LR, Hahnfeldt P (2001) Simple ODE models of tumor growth and anti-angiogenic or radiation treatment. Math Comput Model 33: 1297–1305.
[30] We X, Guo C (2010) Global existence for a mathematical model of the immune response to cancer. Nonlinear Anal-Theor 11(5): 3903–3911. doi:10.1016/j.nonrwa.2010.02.017.
[31] Hirata Y, Bruchovsky N, Aihara K (2010) Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer. J Theor Biol 264: 517–527.
[32] Kuang Y, Nagy JD, Elser JJ (2004) Biological stoichiometry of tumor dynamics: mathematical models and analysis. Dyn Contin Discret I 4(1): 221–240.
[33] Heng HHQ, Stevens JB, Bremer SW, Ye KJ, Liu G, Ye CJ (2010) The evolutionary mechanism of cancer. J Cell Biochem 109(6): 1072–1084.