ارتعاشات غیرخطی میکرولوله‌های مدرج تابعی متخلخل حامل جریان سیال

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه شهید باهنر کرمان، کرمان، ایران.

2 استاد، دانشکده مهندسی مکانیک، دانشگاه شهید باهنر کرمان، کرمان، ایران.

چکیده

در این مقاله، با استفاده از روش تحلیل هموتوپی، یک حل تحلیلی برای ارتعاشات آزاد غیرخطی میکرولوله‌های متخلخل مدرج تابعی حامل جریان سیال ارائه شده است. معادلات حرکت بر اساس تئوری تیر اویلر-برنولی، تئوری تنش کوپل اصلاح شده و با در نظر گرفتن غیرخطی هندسی نوشته شده‌اند. فرض می‌شود که میکرولوله متخلخل بوده و توزیع تخلخل در آن به سه صورت توزیع یکنواخت، توزیع غیریکنواخت متقارن، و توزیع غیریکنواخت نامتقارن باشد. برای بدست آوردن معادلات حاکم بر حرکت، از اصل همیلتون بهره گرفته شده است. همچنین از روش گالرکین برای تبدیل معادلات پاره‌ای به معادلات دیفرانسیل معمولی استفاده شده است. درنهایت، با درنظر گرفتن شرایط مرزی تکیه‌گاه ساده ثابت و استفاده از روش تحلیل هموتوپی، به حل تحلیلی معادلات حاکمه پرداخته شده است. پاسخ بدست آمده از این روش با روش عددی رانگه-کوتا راستی آزمایی شده است که نشان می‌دهد روش تحلیل هموتوپی با در نظر گرفتن دو جمله از سری تیلور، دقت مناسبی دارد. نتایج نشان دادند که از بین طرح‌های توزیع تخلخل پیشنهادی در میکرولوله، طرح توزیع غیریکنواخت نامتقارن مناسب‌ترین است، زیرا میکرولوله در سرعت سیال بالاتری ناپایدار می‌شود.

کلیدواژه‌ها

موضوعات


[1] M. Hosseini and R. Bahaadini (2016) "Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory," I.J. ES, vol. 101, pp. 1-13.
[2] M. Hosseini, A. Z. B. Maryam, and R. Bahaadini (2017) "Forced vibrations of fluid-conveyed double piezoelectric functionally graded micropipes subjected to moving load," M. and N., vol. 21, no. 8, pp. 1-16.
[3] R. Bahaadini and A. R. Saidi (2018) "Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment," E. J. of M.-A/Solids, vol. 72, pp. 298-309.
[4] R. Bahaadini, A. R. Saidi, and M. Hosseini (2019) "Flow-induced vibration and stability analysis of carbon nanotubes based on the nonlocal strain gradient Timoshenko beam theory," J. of V. and C., vol. 25, no. 1, pp. 203-218.
[5] A. Amiri, A. Masoumi, and R. Talebitooti (2020) "Flutter and bifurcation instability analysis of fluid-conveying micro-pipes sandwiched by magnetostrictive smart layers under thermal and magnetic field," I. J. of Mechanics and M.D., pp. 1-20.
]6[ م. سعیدیها و ا. کرمی محمدی (2019) "تحلیل ارتعاشات لوله حاوی جریان سیال، از جنس ماده هدفمند تابعی در راستای ضخامت," مکانیک سازه ها و شاره ها، 9(4) : 107-116.
]7[ م. حسینی و ع. زندی باغچه مریم (2019) "بررسی تحلیلی ارتعاشات آزاد ساختارهای مختلف نانو لوله های برن نیترید تحت تنش اولیه," فصلنامه م. ه، 15(3) : 33-46.
[8] M. Rezaee and V. Arab Maleki (2017) "Vibration Analysis of Fluid Conveying Viscoelastic Pipes Rested on Non-Uniform Winkler Elastic Foundation," (in eng), Modares M. E., vol. 16, no. 12, pp. 87-94.
[9] D. C. Lam, F. Yang, A. Chong, J. Wang, and P. Tong (2003) "Experiments and theory in strain gradient elasticity," J. of the M. and P. of Solids, vol. 51, no. 8, pp. 1477-1508.
[10] C. Liebold and W. H. Müller (2016) "Comparison of gradient elasticity models for the bending of micromaterials," C. M. Science, vol. 116, pp. 52-61.
[11] D. Liu et al. (2013) "Toward a further understanding of size effects in the torsion of thin metal wires: an experimental and theoretical assessment," I. J. of Plasticity, vol. 41, pp. 30-52.
[12] F. Yang, A. Chong, D. C. C. Lam, and P. Tong (2002) "Couple stress based strain gradient theory for elasticity," International journal of solids and structures, vol. 39, no. 10, pp. 2731-2743.
[13] M. Şimşek (2014) "Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method," C. S., vol. 112, pp. 264-272.
[14] M. H. Ghayesh, H. Farokhi, and M. Amabili (2014)  "In-plane and out-of-plane motion characteristics of microbeams with modal interactions," C. Part B: Eng, vol. 60, pp. 423-439.
[15] N. Shafiei, M. Kazemi, and M. Ghadiri (2016) "Nonlinear vibration of axially functionally graded tapered microbeams," International Journal of Engineering Science, vol. 102, pp. 12-26.
[16] H. Farokhi and M. H. Ghayesh (2016) "Nonlinear size-dependent dynamics of an imperfect shear deformable microplate," J. of S. V., vol. 361, pp. 226-242.
[17] M. Mojahedi and M. Rahaeifard (2016) "A size-dependent model for coupled 3D deformations of nonlinear microbridges," I. J of E. S., vol. 100, pp. 171-182.
[18] H. Farokhi, M. P. Païdoussis, and A. K. Misra (2016) "A new nonlinear model for analyzing the behaviour of carbon nanotube-based resonators," J. of S. V., vol. 378, pp. 56-75.
[19] R. Ansari, R. Gholami, and A. Shahabodini (2016) "Size-dependent geometrically nonlinear forced vibration analysis of functionally graded first-order shear deformable microplates," J. of Mechanics, vol. 32, no. 5, pp. 539-554.
[20] M. H. Ghayesh, H. Farokhi, and A. Gholipour (2017) "Oscillations of functionally graded microbeams," I. J. of E. S., vol. 110, pp. 35-53.
[21] Z. Saadatnia, H. Askari, and E. Esmailzadeh, (2018) "Multi-frequency excitation of microbeams supported by Winkler and Pasternak foundations," J of V. C., vol. 24, no. 13, pp. 2894-2911.
[22] A. Setoodeh and S. Afrahim (2014) "Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory," Com S., vol. 116, pp. 128-135.
[23] T.-Z. Yang, S. Ji, X.-D. Yang, and B. Fang, (2014) "Microfluid-induced nonlinear free vibration of microtubes," I. J of E. S., vol. 76, pp. 47-55.
[24] K. Hu, Y. Wang, H. Dai, L. Wang, and Q. Qian (2016) "Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory," I. J of E. S., vol. 105, pp. 93-107.
[25] S. Mashrouteh, M. Sadri, D. Younesian, and E. Esmailzadeh (2016) "Nonlinear vibration analysis of fluid-conveying microtubes," Nonlinear Dyn, vol. 85, no. 2, pp. 1007-1021.
[26] A. M. Dehrouyeh-Semnani, M. Nikkhah-Bahrami, and M. R. H. Yazdi (2017) "On nonlinear vibrations of micropipes conveying fluid," I. J. of E. S., vol. 117, pp. 20-33.
[27] S. Kural and E. Özkaya (2017) "Size-dependent vibrations of a micro beam conveying fluid and resting on an elastic foundation," J of V. and Con, vol. 23, no. 7, pp. 1106-1114.
[28] G.-L. She, F.-G. Yuan, Y.-R. Ren, H.-B. Liu, and W.-S. Xiao (2018) "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory," Com S., vol. 203, pp. 614-623.
[29] H. Babaei, Y. Kiani, and M. Eslami, (2018) "Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment," Thin-Walled S., vol. 132, pp. 48-57.
]30[ فروغی, علی, ا. ممقانی, علی, (2020)"مطالعه پارامتریک دینامیکی لوله‌های چرخان مدرج محوری حامل سیال با درنظرگیری اثرات اندازه," مکانیک سازه ها و شاره ها،10(4) :145-163.
[31] R. Khodabakhsh, A. R. Saidi, and R. Bahaadini (2020) "An analytical solution for nonlinear vibration and post-buckling of functionally graded pipes conveying fluid considering the rotary inertia and shear deformation effects," A. O. Res., vol. 101, p. 102277.
[32] H. Babaei and M. R. Eslami (2020) "On nonlinear vibration and snap-through stability of porous FG curved micro-tubes using two-step perturbation technique," Com S., vol. 247, p. 112447.
]33[ محمدی, ن. بهرامی, منصور, اشرفی و نریمان, "بررسی رفتار دینامیکی لوله‌های مفصلی حامل سیال با سرعت هارمونیک با استفاده از روش مقیاس زمانی چندگانه," مکانیک سازه ها و شاره ها، 11(3) : 53-70.
[34] D. Chen, S. Kitipornchai, and J. Yang (2016) "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core," Thin-Walled S., vol. 107, pp. 39-48.
[35] M. Turkyilmazoglu (2012) "An effective approach for approximate analytical solutions of the damped Duffing equation," Phys. Scri., vol. 86, no. 1, p. 015301.