افزایش انتقال حرارت در یک میکروکانال با استفاده از یک مولد گردابه پیزوالکتریک مرتعش

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه خلیج فارس، بوشهر، ایران

2 استادیار گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه خلیج فارس، بوشهر، ایران

چکیده

یافتن راهکاری برای افزایش نرخ انتقال حرارت در چاه‌ها و مبدل‌های حرارتی از مسایل بسیار پراهمیت در صنایع بشمار می‌آید. از این رو تحقیقات متعددی در راستای بهبود عملکرد این سیستمها انجام گرفته است. در تحقیق حاضر مساله افزایش نرخ انتقال حرارت در یک میکرو کانال مستطیلی حاوی تعدادی مولد گردابه مورد بررسی قرار گرفته است. مولدهای گردابه‌ای درنظر گرفته شده شامل پینهای مکعبی هستند که دارای تیغه‌هایی منعطف مجهز به وصله‌های پیزوالکتریک می‌باشند. این تیغه‌ها با عبور جریان تحت اندرکنش سیال-سازه قرارگرفته و مرتعش میشوند. به منظور اطمینان از برقراری شرایط جریان آرام، عدد رینولدز برحسب قطر هیدرولیکی کانال برابر با 1000 درنظر گرفته شده است. اثرات هیدرولیکی- حرارتی تعداد مولدهای گردابه، سفتی تیغه‌ها در تحریک وصله‌های پیزوالکتریک مورد بررسی قرار گرفته است. نتایج نشان دهنده این واقعیت هستند که مجهز شدن کانال به مولدهای پیزوالکتریک اثر قابل توجهی در افزایش نرخ انتقال حرارت دارد و میتوان با افزایش 33 درصدی توان مورد نیاز پمپی، به میزان 140 درصد نرخ انتقال حرارت را نسبت به کانال بدون مبدل گردابه، بهبود بخشید.

کلیدواژه‌ها


[1] Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2015) Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices. Renew. Sust. Energ. Rev. 49: 444-69
[2] Joule JP (1861) VIII. On the surface-condensation of steam. Philos. Trans. Royal Soc. 151: 133-60.
[3] Bergles AE (2011) Recent developments in enhanced heat transfer. Heat Mass Transf  47(8):1001-8.
[4] Léal, L., Miscevic, M., Lavieille, P., Amokrane, M., Pigache, F., Topin, F., ... & Tadrist, L (2013) An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials. Int. J. Heat Mass Transf. 61: 505-524.
[5] Khan, N., Pinjala, D., & Toh, K. C. (2004) Pool boiling heat transfer enhancement by surface modification/micro-structures for electronics cooling: a review. Proc 6th Electronics Packaging Technology Conference (EPTC 2004)(IEEE Cat. No. 04EX971): 273-280.
[6] Kakaç, S., & Pramuanjaroenkij, A (2009) Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52(13-14): 3187-3196.
[7] Webb, R. L., & Kim, N. Y (2005) Enhanced heat transfer. Taylor and Francis, NY.
[8] Hosseini, S., Aghebatandish, S., Dadvand, A., & Khoo, B. C (2021) An immersed boundary-lattice Boltzmann method with multi relaxation time for solving flow-induced vibrations of an elastic vortex generator and its effect on heat transfer and mixing. Chem. Eng. J. 405: 126652.
[9] Fiebig, M (1998) Vortices, generators and heat transfer. Chem. Eng. Res. Des.            76(2): 108-123.
[10] Awais, M., & Bhuiyan, A. A (2018) Heat transfer enhancement using different types of vortex generators (VGs): A review on experimental and numerical activities. Therm. Sci. Eng. Prog. 5: 524-545.
[11] Lambert, R. A., & Rangel, R. H (2010) The role of elastic flap deformation on fluid mixing in a microchannel. Phys. Fluids 22(5): 052003.
[12] Mirzaee, H., Dadvand, A., Mirzaee, I., & Shabani, R (2012) Heat transfer enhancement in microchannels using an elastic vortex generator. J. Enhanced Heat Transfer 19(3).
[13] Sparrow, E. M., Baliga, B. R., & Patankar, S. V (1977) Heat transfer and fluid flow analysis of interrupted-wall channels, with application to heat exchangers: 4-11
[14] Kaci, H. M., Habchi, C., Lemenand, T., Della Valle, D., & Peerhossaini, H (2010) Flow structure and heat transfer induced by embedded vorticity. Int. J. Heat Mass Transfer 53(17-18): 3575-3584.
[15] Fiebig, M (1995) Embedded vortices in internal flow: heat transfer and pressure loss enhancement. Int. J. Heat Fluid Flow 16(5): 376-388.
[16] Dadvand, A., Hosseini, S., Aghebatandish, S., & Khoo, B. C (2019) Enhancement of heat and mass transfer in a microchannel via passive oscillation of a flexible vortex generator. Chem. Eng. Sci. 207: 556-580.
[17] Sun, X., Ye, Z., Li, J., Wen, K., & Tian, H (2019) Forced convection heat transfer from a circular cylinder with a flexible fin. Int. J. Heat Mass Transf.128: 319-334.
[18] Hosseinirad, E., Khoshvaght-Aliabadi, M., & Hormozi, F (2019) Effects of splitter shape on thermal-hydraulic characteristics of plate-pin-fin heat sink (PPFHS). Int. J. Heat Mass Transfer 143: 118586.
[19] Yu, X., Feng, J., Feng, Q., & Wang, Q (2005) Development of a plate-pin fin heat sink and its performance comparisons with a plate fin heat sink. Appl. Therm. Eng. 25(2-3): 173-182.
[20] Razavi, S. E., Osanloo, B., & Sajedi, R (2015) Application of splitter plate on the modification of hydro-thermal behavior of PPFHS. Appl. Therm. Eng. 80: 97-108.
[21] Yeom, T., Simon, T., Zhang, M., Yu, Y., & Cui, T (2018) Active heat sink with piezoelectric translational agitators, piezoelectric synthetic jets, and micro pin fin arrays. Exp. Therm Fluid Sci. 99: 190-199.
[22] Li, X. J., Zhang, J. Z., & Tan, X. M (2018) An investigation on convective heat transfer performance around piezoelectric fan vibration envelope in a forced channel flow. Int. J. Heat Mass Transfer 126: 48-65.
[23] Kimber, M., & Garimella, S. V (2009) Cooling performance of arrays of vibrating cantilevers. J. Heat Transfer 131(11).
[24] Sufian, S. F., & Abdullah, M. Z (2017) Heat transfer enhancement of LEDs with a combination of piezoelectric fans and a heat sink. Microelectron. Reliab. 68: 39-50.
[25] Chen, Y., Peng, D., & Liu, Y (2020) Heat transfer enhancement of turbulent channel flow using a piezoelectric fan. Int. J. Heat Mass Transf. 147: 118964.
[26] Sheu, W. J., Chen, G. J., & Wang, C. C (2015) Performance of piezoelectric fins for heat dissipation. Int. J. Heat Mass Transf. 86: 72-77.
[27] Wait, S. M., Basak, S., Garimella, S. V., & Raman, A (2007) Piezoelectric fans using higher flexural modes for electronics cooling applications. IEEE Trans. Compon. Packag. Technol. 30(1): 119-128.
[28] Yeom, T., Simon, T. W., Huang, L., North, M. T., & Cui, T (2012) Piezoelectric translational agitation for enhancing forced-convection channel-flow heat transfer. Int. J. Heat Mass Transfer 55(25-26): 7398-7409.
 
[29] Kang, M. S, Park, S. G, Dinh, C. T (2023) Heat transfer enhancement by a pair of asymmetric flexible vortex generators and thermal performance prediction using machine learning algorithms. Int. J. Heat Mass Transfer 200: 123518.
[30] Pham R, Wang S, Dahlgren J, Grindstaff N, Chen C. L (2022). Thermal-hydraulic-dynamic investigation of an inverted self-fluttering vortex generator. Int. J. Heat Mass Transfer 197: 123374.
[31] Brodnianská Z, Kotšmíd S (2022) Heat Transfer Enhancement in the Novel Wavy Shaped Heat Exchanger Channel with Cylindrical Vortex Generators. Appl. Therm. Eng. 119720.
[32] Latif U, Younis M. Y, Idrees S, Uddin E, Abdelkefi A, Munir A, Zhao M (2023) Synergistic analysis of wake effect of two cylinders on energy harvesting characteristics of piezoelectric flag. Renewable Sustainable Energy Rev. 173: 113114.
[33] Cengel Y, Cimbala J (2013) Fluid Mechanics Fundamentals and Applications (SI units). 4th edn. McGraw Hill.
[34] Yang, J (2005) An introduction to the theory of piezoelectricity (Vol. 9, p. 9). New York: Springer.
[35] Bejan, A (2013) Convection heat transfer. John wiley & sons.
[36] Webb, R. L (1981) Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. Int. J. Heat Mass Transfer 24(4): 715-726.
[37] Zhang, X. D., & Sun, C. T (1996) Formulation of an adaptive sandwich beam. Smart Mater. Struct. 5(6), 814.
[38] Parashar, S. K., Von Wagner, U., & Hagedorn, P (2004) A modified Timoshenko beam theory for nonlinear shear-induced flexural vibrations of piezoceramic continua. Nonlinear Dyn. 37(3): 181-205.
[39] Turek, S., & Hron, J (2006) Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: Bungartz, HJ., Schäfer, M. (eds) Fluid-structure interaction: 371-385
[40] Edwards, D. K., Denny, V. E., & Mills, A. F (1978) Transfer processes. an introduction to diffusion, convection and radiation. Series in Thermal and Fluids Engineering.