ارزیابی تجربی اثر فشار پشتی بر کارپذیری و خواص مکانیکی تیتانیوم خالص تجاری در فرایند ایکپ سرد

نوع مقاله : مقاله مستقل

نویسنده

1 استادیار، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران

2 گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

اعمال فرایندهای تغییرشکل پلاستیکی شدید (SPD) نظیر فرایند پرسکاری در کانال‌های هم‌مقطع زاویه‌دار موسوم به ایکپ (ECAP)، منجر به اعمال کرنش‌های شدید بر ماده‌ی فلزی و در نتیجه تحولات میکروساختاری می‌گردد. در اثر این تحولات میکروساختاری ساختار دانه‌بندی فوق ریزدانه شده و به بهبود خواص مکانیکی می‌انجامد. در این تحقیق تیتانیوم خالص تجاری به عنوان یک فلز با تغییرشکل‌پذیری سخت، تحت فرایند ایکپ سرد در کانال 135 درجه همراه با اعمال فشار پشتی قرار گرفت و اثر فشار پشتی بر خواص مکانیکی و کارپذیری آن بررسی شد. نتایج تجربی نشان داد که با اعمال همزمان فشار پشتی و غلاف کردن بیلت در لوله‌ از جنس مس خالص، نمونه‌ی دوفلزی مورد استفاده تا چهار پاس ایکپ شد. با توجه به اینکه در حالت بدون فشار پشتی تنها دو پاس موفق وجود داشت، نتیجه گرفته شد که با اعمال فشار پشتی به دلیل تحمل کرنش بیشتر در پاس‌های بالاتر، کارپذیری بیلت‌های تیتانیومی افزایش یافته است. همچنین نشان داده شد که با اعمال فشار پشتی، استحکام نهایی فشاری ماده به طور قابل توجهی از 899 به 1163 و 1317 مگاپاسکال و میکروسختی از 163 به 203 و 262 ویکرز افزایش یافته و همچنین و ریزشدگی دانه‌ها از 49 به 34 و 24 میکرومتر اتفاق افتاده است. این نتایج به ترتیب برای ماده اولیه آنیل شده و حالت‌های بدون و با اعمال فشار پشتی ارائه شده است.

کلیدواژه‌ها


[1] R.Z. Valiev, T.G. Langdon (2206) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 51(7): 881-981.
[2] B. Ravisankar, J.K. Park (2008) ECAP of commercially pure titanium: a review. Trans. Indian Inst. Met. 61(1): 51-62.
[3] P.S. Roodposhti, N. Farahbakhsh, A. Sarkar, K.L. Murty (2015) Microstructural approach to equal channel angular processing of commercially pure titanium—A review. Trans. Nonferrous Met. Soc. China. 25(5): 1353-1366.
[4] B. Raddad, A. Frefer, M. Abdel‐Rahman, A. Tajouri (2013) Some Aspects of Workability of Engineering Materials. TMS2013 Suppl. Proc. 593-600.
[5] V.V. Stolyarov, R. Lapovok, I.G. Brodova, P.F. Thomson (2003) Ultrafine-grained Al–5 wt.% Fe alloy processed by ECAP with backpressure. Mater. Sci. Eng., A 357(1): 159-167.
[6] K. Xia, J.T. Wang, X. Wu, G. Chen, M. Gurvan (2005) Equal channel angular pressing of magnesium alloy AZ31. Mater. Sci. Eng., A 410: 324-327.
[7] F. Djavanroodi, M. Ebrahimi (2010) Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Mater. Sci. Eng., A 527(4): 1230-1235.
[8] K. Xia, X. Wu (2005) Back pressure equal channel angular consolidation of pure Al particles. Scr. Mater. 53(11): 1225-1229.
[9] M. Haouaoui, I. Karaman, K.T. Harwig, H.J. Maier (2004) Microstructure evolution and mechanical behavior of bulk copper obtained by consolidation of micro-and nanopowders using equal-channel angular extrusion. Metall. Mater. Trans. A 35(9): 2935-2949.
[10] Q. Pham, Y.G. Jeong, S.H. Hong, H.S. Kim (2006) Equal channel angular pressing of carbon nanotube reinforced metal matrix nanocomposites. Key Eng. Mater., Trans Tech Publications, 326: 325-328.
[11] G.G. Yapici, I. Karaman, Z.P. Luo, H. Rack (2003) Microstructure and mechanical properties of severely deformed powder processed Ti–6Al–4V using equal channel angular extrusion. Scr. Mater. 49(10): 1021-1027.
[12] Y.L. Wang, R. Lapovok, J.T. Wang, Y.S. Qi, Y. Estrin (2015) Thermal behavior of copper processed by ECAP with and without back pressure. Mater. Sci. Eng., A 628: 21-29.
[13] A. Mogucheva, E. Babich, B. Ovsyannikov, R. Kaibyshev (2013) Microstructural evolution in a 5024 aluminum alloy processed by ECAP with and without back pressure. Mater. Sci. Eng., A 560: 178-192.
[14] P. Mckenzie, R. Lapovok (2010) ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: Microstructure. Acta Mater. 58(9): 3198-3211.
[15] P. Mckenzie, R. Lapovok (2010) ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 2: Mechanical properties and texture. Acta Mater. 58(9): 3212-3222.
[16] X.N. Gu, N. Li, Y.F. Zheng, F. Kang, J.T. Wang, L. Ruan (2011) In vitro study on equal channel angular pressing AZ31 magnesium alloy with and without back pressure. Mater. Sci. Eng., B 176(20): 1802-1806.
[17] C. Xu, K. Xia, T.G.J.M.S. Langdon, E. A (2009) Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure. Mater. Sci. Eng., A 527(1-2): 205-211.
[18] G.I. Raab, E.P. Soshnikova, R.Z. Valiev (2004) Influence of temperature and hydrostatic pressure during equal-channel angular pressing on the microstructure of commercial-purity Ti. Mater. Sci. Eng., A 387: 674-677.
[19] A. Czerwinski, R. Lapovok, D. Tomus, Y. Estrin, A. Vinogradov (2011) The influence of temporary hydrogenation on ECAP formability and low cycle fatigue life of CP titanium. J. Alloys Compd. 509(6): 2709-2715.
[20] Y. Estrin, H.E. Kim, R. Lapovok, H.P. Ng, J.H. Jo (2013) Mechanical strength and biocompatibility of ultrafine-grained commercial purity titanium. Biomed Res. Int. 2013: 1-6.
[21] Y. Estrin, C. Kasper, S. Diederichs, R. Lapovok (2009) Accelerated growth of preosteoblastic cells on ultrafine grained titanium. J. Biomed. Mater Res. Part A 90(4): 1239-1242.
[22] Y. Estrin, E.P. Ivanova, A. Michalska, V.K. Truong, R. Lapovok, R. Boyd, (2011) Accelerated stem cell attachment to ultrafine grained titanium. Acta Biomater. 7(2): 900-906.
[23] A. Jäger, V. Gärtnerova, K. Tesař (2015) Microstructure and anisotropy of the mechanical properties in commercially pure titanium after equal channel angular pressing with back pressure at room temperature. Mater. Sci. Eng., A 644: 114-120.
[24] R. Naseri, M. Shariati, M. Kadkhodayan (2015) Effect of work-piece cross section on the mechanical properties of commercially pure titanium produced by Equal Channel Angular Pressing. Modares Mech. Eng. 15(6): 157-166.
[25] R. Naseri, M. Kadkhodayan, M. Shariati (2016) The investigation of spring-back of UFG commercially pure titanium in threepoint bending test. Modares Mech. Eng. 16(11): 266-276.
[26] R. Naseri, M. Kadkhodayan, M. Shariati (2017) An experimental investigation of casing effect on mechanical properties of billet in ECAP process. Int. J. Adv. Manuf. Technol. 90(9): 3203-3216.
[27] R. Naseri, H. Hiradfar, M. Shariati, M. Kadkhodayan (2018) A comparison of axial fatigue strength of coarse and ultrafine grain commercially pure titanium produced by ECAP. Arch. Civ. Mech. Eng. 18(3): 755-767.
[28] R. Naseri, M. Kadkhodayan, M. Shariati (2017) Static mechanical properties and ductility of biomedical ultrafine-grained commercially pure titanium produced by ECAP process. Trans. Nonferrous Met. Soc. China. 27(9): 1964-1975.
[29] R. Naseri, H. Hiradfar, M. Shariati, M. Kadkhodayan (2022) Corrosion-fatigue resistance of ultrafine grain commercially pure titanium in simulated body fluid. Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng. DOI: 10.1177/09544089221140682.
[30] X.G. Qiao, M.J. Starink, N. Gao (2009) Hardness inhomogeneity and local strengthening mechanisms of an Al1050 aluminium alloy after one pass of equal channel angular pressing. Mater. Sci. Eng., A 513: 52-58.
[31] L. Wang, Y.C. Wang, A.P. Zhilyaev, A.V. Korznikov, S.K. Li, E. Korznikova, T.G. Langdon (2014) Microstructure and texture evolution in ultrafine-grained pure Ti processed by equal-channel angular pressing with subsequent dynamic compression. Scr. Mater. 77: 33-36.
[32] R. Kocich, A. Macháčková, V.A. Andreyachshenko (2015) A study of plastic deformation behaviour of Ti alloy during equal channel angular pressing with partial back pressure. Comput. Mater. Sci 101: 233-241.
[33] R.Y. Lapovok (2005) The role of back-pressure in equal channel angular extrusion. J. Mater. Sci. 40(2): 341-346.
[34] C. Xu, K. Xia, T.G. Langdon (2007) The role of back pressure in the processing of pure aluminum by equal-channel angular pressing. Acta Mater. 55(7): 2351-2360.
[35] F. Kang, J.T. Wang, Y.L. Su, K.N. Xia (2007) Finite element analysis of the effect of back pressure during equal channel angular pressing. J. Mater. Sci. 42(5): 1491-1500.
[36] X.Y. Liu, X.C. Zhao, X.R. Yang, C. Xie, G.J. Wang (2013) Compression deformation behaviours of ultrafine and coarse grained commercially pure titanium. Mater. Sci. Technol. 29(4): 474-479.
[37] P.W.J. Mckenzie, R. Lapovok (2010) ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: Microstructure. Acta Mater. 58(9): 3198-3211.
[38] P.W.J. Mckenzie, R. Lapovok (2010) ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 2: Mechanical properties and texture. Acta Mater. 58(9): 3212-3222.
[39] V.V. Stolyarov, R. Lapovok (2004) Effect of backpressure on structure and properties of AA5083 alloy processed by ECAP. J. Alloys Compd. 378(1): 233-236.
[40] C. Xu, K. Xia, T.G. Langdon (2009) Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure. Mater. Sci. Eng., A 527(1): 205-211.
[41] F. Kang, J.Q. Liu, J.T. Wang, X. Zhao (2010) Equal Channel Angular Pressing of a Mg–3Al–1Zn Alloy with Back Pressure. Adv. Eng. Mater. 12(8): 730-734.
[42] I.H. Son, J.H. Lee, Y.T. Im (2006) Finite element investigation of equal channel angular extrusion with back pressure. J. Mater. Process. Technol. 171(3): 480-487.
[43] P.W.J. Mc Kenzie, R. Lapovok, Y. Estrin (2007) The influence of back pressure on ECAP processed AA 6016: Modeling and experiment. Acta Mater. 55(9): 2985-2993.
[44] A. Mohammadhosseini, S.H. Masood, D. Fraser, M. Jahedi (2015) Dynamic compressive behaviour of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading. Adv. Manuf. 3(3): 232-243.
[45] X. Zhao, X. Yang, X. Liu, C.T. Wang, Y. Huang, T.G. Langdon (2014) Processing of commercial purity titanium by ECAP using a 90 degrees die at room temperature. Mater. Sci. Eng., A 607: 482-489.