[1] R.Z. Valiev, T.G. Langdon (2206) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 51(7): 881-981.
[2] B. Ravisankar, J.K. Park (2008) ECAP of commercially pure titanium: a review. Trans. Indian Inst. Met. 61(1): 51-62.
[3] P.S. Roodposhti, N. Farahbakhsh, A. Sarkar, K.L. Murty (2015) Microstructural approach to equal channel angular processing of commercially pure titanium—A review. Trans. Nonferrous Met. Soc. China. 25(5): 1353-1366.
[4] B. Raddad, A. Frefer, M. Abdel‐Rahman, A. Tajouri (2013) Some Aspects of Workability of Engineering Materials. TMS2013 Suppl. Proc. 593-600.
[5] V.V. Stolyarov, R. Lapovok, I.G. Brodova, P.F. Thomson (2003) Ultrafine-grained Al–5 wt.% Fe alloy processed by ECAP with backpressure. Mater. Sci. Eng., A 357(1): 159-167.
[6] K. Xia, J.T. Wang, X. Wu, G. Chen, M. Gurvan (2005) Equal channel angular pressing of magnesium alloy AZ31. Mater. Sci. Eng., A 410: 324-327.
[7] F. Djavanroodi, M. Ebrahimi (2010) Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Mater. Sci. Eng., A 527(4): 1230-1235.
[8] K. Xia, X. Wu (2005) Back pressure equal channel angular consolidation of pure Al particles. Scr. Mater. 53(11): 1225-1229.
[9] M. Haouaoui, I. Karaman, K.T. Harwig, H.J. Maier (2004) Microstructure evolution and mechanical behavior of bulk copper obtained by consolidation of micro-and nanopowders using equal-channel angular extrusion. Metall. Mater. Trans. A 35(9): 2935-2949.
[10] Q. Pham, Y.G. Jeong, S.H. Hong, H.S. Kim (2006) Equal channel angular pressing of carbon nanotube reinforced metal matrix nanocomposites. Key Eng. Mater., Trans Tech Publications, 326: 325-328.
[11] G.G. Yapici, I. Karaman, Z.P. Luo, H. Rack (2003) Microstructure and mechanical properties of severely deformed powder processed Ti–6Al–4V using equal channel angular extrusion. Scr. Mater. 49(10): 1021-1027.
[12] Y.L. Wang, R. Lapovok, J.T. Wang, Y.S. Qi, Y. Estrin (2015) Thermal behavior of copper processed by ECAP with and without back pressure. Mater. Sci. Eng., A 628: 21-29.
[13] A. Mogucheva, E. Babich, B. Ovsyannikov, R. Kaibyshev (2013) Microstructural evolution in a 5024 aluminum alloy processed by ECAP with and without back pressure. Mater. Sci. Eng., A 560: 178-192.
[14] P. Mckenzie, R. Lapovok (2010) ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: Microstructure. Acta Mater. 58(9): 3198-3211.
[15] P. Mckenzie, R. Lapovok (2010) ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 2: Mechanical properties and texture. Acta Mater. 58(9): 3212-3222.
[16] X.N. Gu, N. Li, Y.F. Zheng, F. Kang, J.T. Wang, L. Ruan (2011) In vitro study on equal channel angular pressing AZ31 magnesium alloy with and without back pressure. Mater. Sci. Eng., B 176(20): 1802-1806.
[17] C. Xu, K. Xia, T.G.J.M.S. Langdon, E. A (2009) Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure. Mater. Sci. Eng., A 527(1-2): 205-211.
[18] G.I. Raab, E.P. Soshnikova, R.Z. Valiev (2004) Influence of temperature and hydrostatic pressure during equal-channel angular pressing on the microstructure of commercial-purity Ti. Mater. Sci. Eng., A 387: 674-677.
[19] A. Czerwinski, R. Lapovok, D. Tomus, Y. Estrin, A. Vinogradov (2011) The influence of temporary hydrogenation on ECAP formability and low cycle fatigue life of CP titanium. J. Alloys Compd. 509(6): 2709-2715.
[20] Y. Estrin, H.E. Kim, R. Lapovok, H.P. Ng, J.H. Jo (2013) Mechanical strength and biocompatibility of ultrafine-grained commercial purity titanium. Biomed Res. Int. 2013: 1-6.
[21] Y. Estrin, C. Kasper, S. Diederichs, R. Lapovok (2009) Accelerated growth of preosteoblastic cells on ultrafine grained titanium. J. Biomed. Mater Res. Part A 90(4): 1239-1242.
[22] Y. Estrin, E.P. Ivanova, A. Michalska, V.K. Truong, R. Lapovok, R. Boyd, (2011) Accelerated stem cell attachment to ultrafine grained titanium. Acta Biomater. 7(2): 900-906.
[23] A. Jäger, V. Gärtnerova, K. Tesař (2015) Microstructure and anisotropy of the mechanical properties in commercially pure titanium after equal channel angular pressing with back pressure at room temperature. Mater. Sci. Eng., A 644: 114-120.
[24] R. Naseri, M. Shariati, M. Kadkhodayan (2015) Effect of work-piece cross section on the mechanical properties of commercially pure titanium produced by Equal Channel Angular Pressing. Modares Mech. Eng. 15(6): 157-166.
[25] R. Naseri, M. Kadkhodayan, M. Shariati (2016) The investigation of spring-back of UFG commercially pure titanium in threepoint bending test. Modares Mech. Eng. 16(11): 266-276.
[26] R. Naseri, M. Kadkhodayan, M. Shariati (2017) An experimental investigation of casing effect on mechanical properties of billet in ECAP process. Int. J. Adv. Manuf. Technol. 90(9): 3203-3216.
[27] R. Naseri, H. Hiradfar, M. Shariati, M. Kadkhodayan (2018) A comparison of axial fatigue strength of coarse and ultrafine grain commercially pure titanium produced by ECAP. Arch. Civ. Mech. Eng. 18(3): 755-767.
[28] R. Naseri, M. Kadkhodayan, M. Shariati (2017) Static mechanical properties and ductility of biomedical ultrafine-grained commercially pure titanium produced by ECAP process. Trans. Nonferrous Met. Soc. China. 27(9): 1964-1975.
[29] R. Naseri, H. Hiradfar, M. Shariati, M. Kadkhodayan (2022) Corrosion-fatigue resistance of ultrafine grain commercially pure titanium in simulated body fluid. Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng. DOI: 10.1177/09544089221140682.
[30] X.G. Qiao, M.J. Starink, N. Gao (2009) Hardness inhomogeneity and local strengthening mechanisms of an Al1050 aluminium alloy after one pass of equal channel angular pressing. Mater. Sci. Eng., A 513: 52-58.
[31] L. Wang, Y.C. Wang, A.P. Zhilyaev, A.V. Korznikov, S.K. Li, E. Korznikova, T.G. Langdon (2014) Microstructure and texture evolution in ultrafine-grained pure Ti processed by equal-channel angular pressing with subsequent dynamic compression. Scr. Mater. 77: 33-36.
[32] R. Kocich, A. Macháčková, V.A. Andreyachshenko (2015) A study of plastic deformation behaviour of Ti alloy during equal channel angular pressing with partial back pressure. Comput. Mater. Sci 101: 233-241.
[33] R.Y. Lapovok (2005) The role of back-pressure in equal channel angular extrusion. J. Mater. Sci. 40(2): 341-346.
[34] C. Xu, K. Xia, T.G. Langdon (2007) The role of back pressure in the processing of pure aluminum by equal-channel angular pressing. Acta Mater. 55(7): 2351-2360.
[35] F. Kang, J.T. Wang, Y.L. Su, K.N. Xia (2007) Finite element analysis of the effect of back pressure during equal channel angular pressing. J. Mater. Sci. 42(5): 1491-1500.
[36] X.Y. Liu, X.C. Zhao, X.R. Yang, C. Xie, G.J. Wang (2013) Compression deformation behaviours of ultrafine and coarse grained commercially pure titanium. Mater. Sci. Technol. 29(4): 474-479.
[37] P.W.J. Mckenzie, R. Lapovok (2010) ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 1: Microstructure. Acta Mater. 58(9): 3198-3211.
[38] P.W.J. Mckenzie, R. Lapovok (2010) ECAP with back pressure for optimum strength and ductility in aluminium alloy 6016. Part 2: Mechanical properties and texture. Acta Mater. 58(9): 3212-3222.
[39] V.V. Stolyarov, R. Lapovok (2004) Effect of backpressure on structure and properties of AA5083 alloy processed by ECAP. J. Alloys Compd. 378(1): 233-236.
[40] C. Xu, K. Xia, T.G. Langdon (2009) Processing of a magnesium alloy by equal-channel angular pressing using a back-pressure. Mater. Sci. Eng., A 527(1): 205-211.
[41] F. Kang, J.Q. Liu, J.T. Wang, X. Zhao (2010) Equal Channel Angular Pressing of a Mg–3Al–1Zn Alloy with Back Pressure. Adv. Eng. Mater. 12(8): 730-734.
[42] I.H. Son, J.H. Lee, Y.T. Im (2006) Finite element investigation of equal channel angular extrusion with back pressure. J. Mater. Process. Technol. 171(3): 480-487.
[43] P.W.J. Mc Kenzie, R. Lapovok, Y. Estrin (2007) The influence of back pressure on ECAP processed AA 6016: Modeling and experiment. Acta Mater. 55(9): 2985-2993.
[44] A. Mohammadhosseini, S.H. Masood, D. Fraser, M. Jahedi (2015) Dynamic compressive behaviour of Ti-6Al-4V alloy processed by electron beam melting under high strain rate loading. Adv. Manuf. 3(3): 232-243.
[45] X. Zhao, X. Yang, X. Liu, C.T. Wang, Y. Huang, T.G. Langdon (2014) Processing of commercial purity titanium by ECAP using a 90 degrees die at room temperature. Mater. Sci. Eng., A 607: 482-489.