بررسی تجربی و شبیه‌سازی عددی عملیات برش متعامد استخوان کورتیکال با استفاده از مدل ماده الاستیک - پلاستیک و مدل آسیب دینامیکی

نوع مقاله : مقاله مستقل

نویسندگان

1 استاد‌یار، دانشکده مهندسی مکانیک، دانشگاه صنعتی اراک

2 کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی اراک

3 کارشناسی، دانشکده مهندسی مکانیک، دانشگاه صنعتی اراک

4 دانشیار،دانشکده مهندسی مکانیک، دانشگاه اراک

چکیده

امروزه ماشین‌کاری استخوان به‌عنوان یکی از مهم‌ترین مراحل جراحی‌های ارتوپدی شناخته می‌شود. با شبیه‌سازی دقیق و مؤثر از فرایند ماشین‌کاری می‌توان به بهبود سریع‌تر بیمار و راندمان بالا در جراحی دست‌یافت. براین‌اساس تخمین و کنترل دمای تولیدی در ماشین‌کاری برای جلوگیری از تولید گرمای بیش از حد و آسیب حرارتی به استخوان ضروری است. بررسی فرایند برش متعامد به دلیل پایه‌ی دیگر فرایندهای ماشین‌کاری حائز اهمیت است؛ بنابراین مطالعه تجربی و عددی برای برش متعامد انجام شد. یک مدل المان محدود دوبعدی برای پیش‌بینی نتایج دما در طول برش متعامد ارائه شده است. از یک مدل الاستیک - پلاستیک به‌عنوان مدل ماده برای پیش‌بینی رفتار استخوان کورتیکال در شبیه‌سازی المان محدود استفاده شد. مدل آسیب برای شکست کامل ماده، نفوذ ابزار و تشکیل براده به‌کار گرفته شد. شبیه‌سازی برای اولین بار با مدل آسیب انجام گرفت و نتایج آن برای اولین بار با روش سطح پاسخ و تحلیل حساسیت به روش سوبل برای هر پارامتر به‌صورت جداگانه و برهم‌کنش پارامترها بررسی و تحلیل شد. نتایج آزمایش شبیه‌سازی توافق نزدیکی را با نتایج تجربی نشان می‌دهد. طبق بهینه‌سازی انجام شده کمینه دما در شرایطی که عمق برش 1/0 میلی‌متر، سرعت حدود 192 میلی‌متر بر ثانیه و زاویه براده 12 درجه است، حدود 26 درجه سلسیوس می‌شود. مطالعه انجام شده می‌تواند در پیشبرد هر چه‌بهتر فرایند ماشین‌کاری استخوان مؤثر باشد و باعث پیشرفت در حوزه جراحی ارتوپدی، بهینه‌سازی پارامترهای برش و طراحی ابزار شود.

کلیدواژه‌ها


[1] Arrington, E. D., Smith, W. J., Chambers, H. G., Bucknell, A. L., & Davino, N. A. (1996). Complications of iliac crest bone graft harvesting.Clin. Orthop. Relat. Res., 329, 300-309.
[2] Harrysson, O. L., Hosni, Y. A., & Nayfeh, J. F. (2007). Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet. Disord. 8(1), 1-10.
[3] Shakouri, E., Sadeghi, M. H., Karafi, M. R., Maerefat, M., & Farzin, M. (2015). An in vitro study of thermal necrosis in ultrasonic-assisted drilling of bone. Proc Inst Mech Eng H P I MECH ENG H 229(2), 137-149.
[4] Shakouri, E., Haghighi Hassanalideh, H., & Fotuhi, S. (2021). Bone drilling with internal gas cooling: Experimental and statistical investigation of the effect of cooling with CO 2 on reduction of temperature rise due to drill bit wear. APEM, 16(2).
[5] Shakouri, E., Sadeghi, M. H., Maerefat, M., & Shajari, S. (2014). Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone. Proc Inst Mech Eng H P I MECH ENG H, 228(4), 330-341.
[6] Sarparast, M., Ghoreishi, M., Jahangirpoor, T., & Tahmasbi, V. (2019). Modelling and optimisation of temperature and force behaviour in high-speed bone drilling. Biotechnol. Biotechnol. Equip. 33(1), 1616-1625.
[7] Yeager, C., Nazari, A., & Arola, D. (2008). Machining of cortical bone: surface texture, surface integrity and cutting forces. Mach. Sci, 12(1), 100-118.
[8] Lee, J., Chavez, C. L., & Park, J. (2018). Parameters affecting mechanical and thermal responses in bone drilling: A review.   J. Biomech., 71, 4-21.
[9] Hillery, M. T., & Shuaib, I. (1999). Temperature effects in the drilling of human and bovine bone. J. Mater. Process. Technol. 92, 302-308.
[10] Alam, K., Mitrofanov, A. V., & Silberschmidt, V. V. (2009). Finite element analysis of forces of plane cutting of cortical bone. J. Adv. Manuf. Technol, 46(3), 738-743.
[11] Saghafi, B., Ghoreishi, M., & Narooei, K. (2019). Prediction of safe zone for osteonecrosis in the cutting process of bovine cortical femur bone using Arbitrary Lagrangian-Eulerian method and multi-objective optimization. J. Adv. Manuf. Technol, 104(5), 2031-2043.
[12] Rosidi, A., Ginta, T. L., & Rani, A. M. B. A. (2017). Optimization of bone drilling parameters using Taguchi method based on finite element analysis. IOP Conf. Ser.: Mater. Sci. Eng (Vol. 203, No. 1, p. 012016). IOP Publishing.
[13] Lee, J., Rabin, Y., & Ozdoganlar, O. B. (2011). A new thermal model for bone drilling with applications to orthopaedic surgery. Med Eng Phys, 33(10), 1234-1244.
[14] Sui, J., Sugita, N., Ishii, K., Harada, K., & Mitsuishi, M. (2014). Mechanistic modeling of bone-drilling process with experimental validation. J. Mater. Process. Technol., 214(4), 1018-1026.
[15] Sezek, S., Aksakal, B., & Karaca, F. (2012). Influence of drill parameters on bone temperature and necrosis: A FEM modelling and in vitro experiments. Comput. Mater. Sci., 60, 13-18.
[16] Davidson, S. R., & James, D. F. (2003). Drilling in bone: modeling heat generation and temperature distribution. J. Biomech. Eng., 125(3), 305-314.
[17] Shin, H. C., & Yoon, Y. S. (2006). Bone temperature estimation during orthopaedic round bur milling operations. J. Biomech, 39(1), 33-39.
[18] Sugita, N., Osa, T., & Mitsuishi, M. (2009). Analysis and estimation of cutting-temperature distribution during end milling in relation to orthopedic surgery. Med Eng Phys, 31(1), 101-107.
[19] Liao, Z., Axinte, D., & Gao, D. (2019). On modelling of cutting force and temperature in bone milling. J. Mater. Process. Technol., 266, 627-638.
[20] Arbabtafti, M., Moghaddam, M., Nahvi, A., Mahvash, M., Richardson, B., & Shirinzadeh, B. (2010). Physics-based haptic simulation of bone machining. IEEE T HAPTICS, 4(1), 39-50.
[21] Al-Abdullah, K. I. A. L., Abdi, H., Lim, C. P., & Yassin, W. A. (2018). Force and temperature modelling of bone milling using artificial neural networks. Measurement, 116, 25-37.
[22] Noordin, M. Y., Jiawkok, N., Ndaruhadi, P. Y. M. W., & Kurniawan, D. (2015). Machining of bone: Analysis of cutting force and surface roughness by turning process. Proc Inst Mech Eng H P I MECH ENG H, 229(11), 761-768.
[23] Qasemi, M., Sheikhi, M., Zolfaghari, M., & Tahmasbi, V. (2020). Experimental Investigation, Mathematical Modeling and Optimization of Cutting Forces in the Automatic Process of Cortical Bone Milling. Modares Mechanical Engineering, 20(4), 987-997.
]24[قریشی م, ذوالفقاری م, طهماسبی و, حیدری ح. (2018). مدل سازی ریاضی، تحلیل حساسیت سوبل و بهینه سازی رفتار دما در فرآیند سوراخ کاری اتوماتیک استخوان. مهندسی مکانیک مدرس, 18(5), 142-153.‎
[25] Hill, R. T. (1952). On discontinuous plastic states, with special reference to localized necking in thin sheets. J Mech Phys Solids, 1(1), 19-30.
[26] Hill, R. (1990). Constitutive modelling of orthotropic plasticity in sheet metals. J Mech Phys Solids, 38(3), 405-417.
 
[27] Cowper, G. R., & Symonds, P. S. (1957). Strain-hardening and strain-rate effects in the impact loading of cantilever beams. Brown Univ Providence Ri.
[28] Sobol, I. M. (1993). Sensitivity analysis for non-linear mathematical models. Mathematical modelling and computational experiment, 1, 407-414.
[29] Santiuste, C., Rodríguez-Millán, M., Giner, E., & Miguélez, H. (2014). The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone. Compos. Struct, 116, 423-431.
[30] Lughmani, W. A., Bouazza-Marouf, K., & Ashcroft, I. (2015). Drilling in cortical bone: a finite element model and experimental investigations. J Mech Behav Biomed Mater, 42, 32-42.
[31] Singh, G., Jain, V., Gupta, D., & Ghai, A. (2016). Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method. J Mech Behav Biomed Mater, 62, 355-365.
 
[32] Singh, G., Jain, V., Gupta, D., & Ghai, A. (2016). Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method. J Mech Behav Biomed Mater, 62, 355-365.
[33] Pandey, R. K., & Panda, S. S. (2015). Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach. J. Intell. Manuf, 26(6), 1121-1129.
[34] Montgomery, D. C. (2017). Design and analysis of experiments. John wiley & sons.
[35] Pandey, R. K., & Panda, S. S. (2015). Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach. J. Intell. Manuf, 26(6), 1121-1129.
[36] Tahmasbi, V., Safari, M., & Joudaki, J. (2020). Statistical modeling, Sobol sensitivity analysis and optimization of single-tip tool geometrical parameters in the cortical bone machining process. Proc Inst Mech Eng H P I MECH ENG H, 234(1), 28-38.
[37] Korayem, M. H., & Rastegar, Z. (2012). Application of nano-contact mechanics models in manipulation of biological nano-particle: FE simulation. IJNN 8(1), 35-50.‏