بهبود عملکرد آیرودینامیکی یک توربین بادی با جت دمشی و بهینه سازی گشتاور تولید شده با استفاده از روش تاگوچی

نوع مقاله : مقاله مستقل

نویسندگان

1 دکترا، مهندسی هوا و فضا، دانشگاه فردوسی مشهد، مشهد، خراسان رضوی، ایران

2 استاد، دکترا مهندسی هوا و فضا، دانشگاه فردوسی مشهد، مشهد، خراسان رضوی، ایران

چکیده

بهبود جدایش جریان اطراف توربین بادی محور افقی فاز ششم با تعبیه جت هوا بررسی شد. با استفاده از روش تاگوچی و با بهره گیری از پارامترهای کنترلی، ترکیب‌های بهینه و سطح اهمیت پارامترها در افزایش تولید گشتاور با استفاده از تجزیه و تحلیل نسبت سیگنال به نویز و واریانس به دست آمدند و گشتاورها بهینه شدند. مشخص شد که میزان اهمیت پارامترها بر افزایش گشتاور به ترتیب اهمیت شامل نسبت سرعت، موقعیت وتری و موقعیت طولی می‌باشد. در این راستا توربینی شامل دوازده جت به عرض 04/0 وتر محلی در موقعیت‌های وتری 1/0-3/0-5/0 و 7/0 با نرم افزار فلوئنت 2/18 و مدل آشفتگی kω- SST شبیه سازی و حل عددی انجام شد. مکان‌های طولی شامل سه قسمت بیرونی، میانی و داخلی هستند. نسبت‌های سرعت برای جت خروجی برابر 2/0،1/4،2/2، 8/2 و 2/3 می‌باشند. نتایج نشان دادند تغییرات گشتاور وابسته به تغییر در پارامترهایی بی بعد نظیر نسبت سرعت جت ، موقعیت وتری و موقعیت طولی می باشد. اثرات آیرودینامیکی جت‌ دوتایی، سه تایی و چهارتایی با جت تکی مقایسه و افزایش گشتاور به واسطه بهبود الگوی جریان در اثر اتصال مجدد جریان جدا شده از سطح تیغه علی الخصوص در قسمت نوک تیغه ملاحظه گردید. جت‌های بیرونی بر افزایش گشتاور تأثیر گذارتر بودند و در بهترین حالت، گشتاور تولید شده به واسطه ی جتT1به میزان 132% یعنی بیش از دو برابر افزایش یافت و به عنوان اوج افزایش گشتاور گزارش شد.

کلیدواژه‌ها

موضوعات


[1] Van Dam, C. P., Berg, D. E., & Johnson, S. J. (2008). Active load control techniques for wind turbines (No. SAND2008-4809). Sandia National Laboratories.
[2] Barlas, T. K., & van Kuik, G. A. (2010). Review of state of the art in smart rotor control research for wind turbines. Prog in Aerospace Sci, 46(1), 1-27.
[3] Kang, T. J., & Park, W. G. (2013). Numerical investigation of active control for an S809 wind turbine airfoil. International J. Prec. Engng Manufa., 14(6), 1037-1041.
[4] Yousefi, K., & Saleh, R. (2014). The effects of trailing edge blowing on aerodynamic characteristics of the NACA 0012 airfoil and optimization of the blowing slot geometry. J. Theo Appl. Mech., 52, 165-179.
]5[ اکبر زاده پوریا، میرزایی ایرج، کیهانی محمدحسن، اکبر زاده ابراهیم. تأثیر دمش و مکش روی ضرایب برآ و پسای جریان‌های تراکم ناپذیر لزج عبوری از هیدرو فویل‌ها به کمک روش پیش‌شرط توانی. مهندسی مکانیک مدرس. ۱۳۹۳; ۱۴ (۴): ۱۲۹-۱۴۰)
]6[  شرفی، احمد، آل هوز، متین. (1398). تأثیر اعمال دمش جانبی ثابت بر روی ضرایب آیرودینامیکی یک مدل بال هواپیمای مانور پذیر. نشریه مهندسی مکانیک امیرکبیر, 52(11),3001-3014
]7[ سید شمس طالقانی, سید آرش. (1398). مطالعه عددی و پارامتری کنترل جریان به طریق مکش بر روی یک سیلندر به‌منظور کاهش نا پایایی‌های جریان و ریزش گردابه‌ها. مهندسی مکانیک دانشگاه تبریز, 49(3), 183-192.
]8[  عبدالهی، سهیلا، مردانی، عباس، سید شمس طالقانی، سید آرش. (1395). تأثیر جت خلاف جریان پالسی بر عملکرد ائروترمودینامیکی برای یک کپسول بازگشتی مافوق صوت. دانش و فناوری هوافضا, 5(1), 55-65.
[9] Gross, A., & Fasel, H. F. (2012). Flow control for NREL S822 wind turbine airfoil. AIAA J., 50(12), 2779-2790.
[10] Ebrahimi, A., & Movahhedi, M. (2017). Power improvement of NREL 5-MW wind turbine using multi-DBD plasma actuators. Ene Conv Man, 146, 96-106.
[11] Oliver, A. G. (1997). Air jet vortex generators for wind turbines (Doctoral dissertation, Uni London).
[12] Szwaba, R. (2011). Comparison of the influence of different air-jet vortex generators on the separation region. AerO Sci. Technology, 15(1), 45-52.
[13] Yen, J., & Ahmed, N. A. (2013). Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets. Jou Wind Eng Ind Aero, 114, 12-17.
[14]Wang, H., Zhang, B., Qiu, Q., & Xu, X. (2017). Flow control on the NREL S809 wind turbine airfoil using vortex generators. Energy, 118, 1210-1221.
[15] Wang, Y., Li, G., Shen, S., Huang, D., & Zheng, Z. (2018). Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-cylinder in front of the blade leading edge. Energy, 143, 1107-1124.
[16] Moshfeghi, M., Shams, S., & Hur, N. (2017). Aerodynamic performance enhancement analysis of horizontal axis wind turbines using a passive flow control method via split blade. Jou of Wind Eng and Ind. Aerodynamics, 167, 148-159.
[17] Ebrahimi, A., & Movahhedi, M. (2018). Wind turbine power improvement utilizing passive flow control with microtab. Energy, 150, 575-582.
[18] Zhang, Y., Ramdoss, V., Saleem, Z., Wang, X., Schepers, G., & Ferreira, C. (2019). Effects of root Gurney flaps on the aerodynamic performance of a horizontal axis wind turbine. Energy, 187, 115955.
[19] Guoqiang, L., Weiguo, Z., Yubiao, J., & Pengyu, Y. (2019). Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator. Energy, 185, 90-101.
[20] Wang, H., Jiang, X., Chao, Y., Li, Q., Li, M., Zheng, W., & Chen, T. (2019). Effects of leading edge slat on flow separation and aerodynamic performance of wind turbine. Energy, 182, 988-998.
[21] Sedighi, H., Akbarzadeh, P., & Salavatipour, A. (2020). Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation. Energy, 195, 117056.
[22] Acarer, S. (2020). Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines. Energy, 201, 117659.
[23] Wang, Z. Wang, Y. & Zhuang, M. (2018). Improvement of the aerodynamic performance of vertical axis wind turbines with leading-edge serrations and helical blades using CFD and Taguchi method. Energy conversion and management, 177, 107-121.
[24] Taguchi, G. (1986). Introduction to quality engineering: designing quality into products and processes (No. 658.562 T3).
[25] Taguchi, G. I. (1994). Taguchi methods: On-line production. Amer Supplier Inst.
[26] Taguchi, G., Elsayed, E. A., & Hsiang, T. C. (1989). Quality engineering in production systems. McGraw-Hill College.
[27] Taguchi, G. (1986). Introduction to quality engineering: designing quality into products and processes (No. 658.562 T3).
[28] Ku, K. U. J., Rao, S. S. (1998). Taguchi-aided search method for design optimization of engineering systems. Eng  Opt, 30(1), 1-23.
[29] Wang, G.G. and Shan, S. (2006), "Review of Metamodeling Techniques in Support of Engineering Design Optimization," J. Mecha. Desgn, 129 (4), pp 370-380.
[30] Ahmed, M.Y.M. and Qin, N. (2009), "Surrogate-Based Aerodynamic Design Optimization: Use of Surrogates in Aerodynamic Design Optimization," 13th International Conference on AERO SCI & AVIATION TECHNOLOGY, ASAT-13-AE-14.
[31] Sarıkaya, M. and Güllü, A. (2014), " Taguchi design and response surface methodology-based analysis of machining parameters in CNC turning under MQL," Jou of Cle Prod, 65 (1), pp 604-616.
[32] Hernández, S. and Díaz, J. (2012), "An application of Taguchi’s method to robust design of aircraft structures," WIT Transactions on The Built Environment, 124 (1), pp 3-12.
[33] Gaitonde, V. N., Karnik, S. R., & Davim, J. P. (2015). Multiple performance optimization in drilling using Taguchi method with utility and modified utility concepts. In Materials Forming and Machining (pp. 99-115). Woodhead Publishing.
[34] Deng, L., Feng, B., & Zhang, Y. (2018). An optimization method for multi-objective and multi-factor designing of a ceramic slurry: Combining orthogonal experimental design with artificial neural networks. Ceramics Int, 44(13), 15918-15923.
[35] Goharimanesh, M., Akbari, A., & Tootoonchi, A. A. (2014). More efficiency in fuel consumption using gearbox optimization based on Taguchi method. J. Ind Engng Inter, 10(2), 1-8.
[36] Rao, S. S. (2015, November). Robust design of horizontal axis wind turbines using Taguchi method. In ASME International Mechanical Engineering Congress and Exposition (Vol. 57441, p. V06BT07A056). American Society of Mech Eng.
[37] Jureczko, M. E. Z. Y. K., Pawlak, M., & Mężyk, A. (2005). Optimisation of wind turbine lades. J mater. Pro. tech, 167(2-3), 463-471.
[38] Lanzafame, R., & Messina, M. (2009). Optimal wind turbine design to maximize energy production. Proceedings of the Institution of Mechanical Engineers, Part A: J. Pow Eng, 223(2), 93-101.
 
[39] Giguere, P., & Selig, M. S. (1999). Design of a tapered and twisted blade for the NREL combined experiment rotor (No. NREL/SR-500-26173). Lab, Golden, CO (US).
[40] Derakhshan, S., & Tavaziani, A. (2015). Study of wind turbine aerodynamic performance using numerical methods. Jou Cle Ene Tech, 3(2), 83-90.
[41] Abdulqadir, S. A., Iacovides, H., & Nasser, A. (2017). The physical modelling and aerodynamics of turbulent flows around horizontal axis wind turbines. Energy, 119, 767-799.
 [42] S. V. PATANKAR, D. B. SPALDING. A calculation procedure for heat, mass, and momentum transfer in 3D parabolic flows. Int J He at Mass Transf, vol. 15, p. 1787e806, 1972.
[43] Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, heat and mass transfer, 4(1), 625-632.
[44] Menter, F. (1993, July). Zonal two equation kw turbulence models for aerodynamic flows. In 23rd fluid dynamics, plasmadynamics, and lasers conference (p. 2906).
[45] Hand, M. M., Simms, D. A., Fingersh, L. J., Jager, D. W., Cotrell, J. R., Schreck, S., & Larwood, S. M. (2001). Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns (No. NREL/TP-500-29955). National Renewable Energy Lab., Golden, CO.(US).
[46] Duque, E. P., Burklund, M. D., & Johnson, W. (2003). Navier-Stokes and comprehensive analysis performance predictions of the NREL phase VI experiment. J. Sol. Energy Eng., 125(4), 457-467.
[47] Yelmule, M. M., & Vsj, E. A. (2013). CFD predictions of NREL phase VI rotor experiments in NASA/AMES wind tunnel. International Journal of Ren. Ene Research (IJRER), 3(2), 261-269.
[48] John D. Anderson, Jr. Fundamentals of Aerodynamics Sixth Edition Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland p-428. Mc Graw Hill.