[1] Van Dam, C. P., Berg, D. E., & Johnson, S. J. (2008). Active load control techniques for wind turbines (No. SAND2008-4809). Sandia National Laboratories.
[2] Barlas, T. K., & van Kuik, G. A. (2010). Review of state of the art in smart rotor control research for wind turbines. Prog in Aerospace Sci, 46(1), 1-27.
[3] Kang, T. J., & Park, W. G. (2013). Numerical investigation of active control for an S809 wind turbine airfoil. International J. Prec. Engng Manufa., 14(6), 1037-1041.
[4] Yousefi, K., & Saleh, R. (2014). The effects of trailing edge blowing on aerodynamic characteristics of the NACA 0012 airfoil and optimization of the blowing slot geometry. J. Theo Appl. Mech., 52, 165-179.
]5[ اکبر زاده پوریا، میرزایی ایرج، کیهانی محمدحسن، اکبر زاده ابراهیم. تأثیر دمش و مکش روی ضرایب برآ و پسای جریانهای تراکم ناپذیر لزج عبوری از هیدرو فویلها به کمک روش پیششرط توانی. مهندسی مکانیک مدرس. ۱۳۹۳; ۱۴ (۴): ۱۲۹-۱۴۰)
]6[ شرفی، احمد، آل هوز، متین. (1398). تأثیر اعمال دمش جانبی ثابت بر روی ضرایب آیرودینامیکی یک مدل بال هواپیمای مانور پذیر. نشریه مهندسی مکانیک امیرکبیر, 52(11),3001-3014
]7[ سید شمس طالقانی, سید آرش. (1398). مطالعه عددی و پارامتری کنترل جریان به طریق مکش بر روی یک سیلندر بهمنظور کاهش نا پایاییهای جریان و ریزش گردابهها. مهندسی مکانیک دانشگاه تبریز, 49(3), 183-192.
]8[ عبدالهی، سهیلا، مردانی، عباس، سید شمس طالقانی، سید آرش. (1395). تأثیر جت خلاف جریان پالسی بر عملکرد ائروترمودینامیکی برای یک کپسول بازگشتی مافوق صوت. دانش و فناوری هوافضا, 5(1), 55-65.
[9] Gross, A., & Fasel, H. F. (2012). Flow control for NREL S822 wind turbine airfoil. AIAA J., 50(12), 2779-2790.
[10] Ebrahimi, A., & Movahhedi, M. (2017). Power improvement of NREL 5-MW wind turbine using multi-DBD plasma actuators. Ene Conv Man, 146, 96-106.
[11] Oliver, A. G. (1997). Air jet vortex generators for wind turbines (Doctoral dissertation, Uni London).
[12] Szwaba, R. (2011). Comparison of the influence of different air-jet vortex generators on the separation region. AerO Sci. Technology, 15(1), 45-52.
[13] Yen, J., & Ahmed, N. A. (2013). Enhancing vertical axis wind turbine by dynamic stall control using synthetic jets. Jou Wind Eng Ind Aero, 114, 12-17.
[14]Wang, H., Zhang, B., Qiu, Q., & Xu, X. (2017). Flow control on the NREL S809 wind turbine airfoil using vortex generators. Energy, 118, 1210-1221.
[15] Wang, Y., Li, G., Shen, S., Huang, D., & Zheng, Z. (2018). Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-cylinder in front of the blade leading edge. Energy, 143, 1107-1124.
[16] Moshfeghi, M., Shams, S., & Hur, N. (2017). Aerodynamic performance enhancement analysis of horizontal axis wind turbines using a passive flow control method via split blade. Jou of Wind Eng and Ind. Aerodynamics, 167, 148-159.
[17] Ebrahimi, A., & Movahhedi, M. (2018). Wind turbine power improvement utilizing passive flow control with microtab. Energy, 150, 575-582.
[18] Zhang, Y., Ramdoss, V., Saleem, Z., Wang, X., Schepers, G., & Ferreira, C. (2019). Effects of root Gurney flaps on the aerodynamic performance of a horizontal axis wind turbine. Energy, 187, 115955.
[19] Guoqiang, L., Weiguo, Z., Yubiao, J., & Pengyu, Y. (2019). Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator. Energy, 185, 90-101.
[20] Wang, H., Jiang, X., Chao, Y., Li, Q., Li, M., Zheng, W., & Chen, T. (2019). Effects of leading edge slat on flow separation and aerodynamic performance of wind turbine. Energy, 182, 988-998.
[21] Sedighi, H., Akbarzadeh, P., & Salavatipour, A. (2020). Aerodynamic performance enhancement of horizontal axis wind turbines by dimples on blades: Numerical investigation. Energy, 195, 117056.
[22] Acarer, S. (2020). Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines. Energy, 201, 117659.
[23] Wang, Z. Wang, Y. & Zhuang, M. (2018). Improvement of the aerodynamic performance of vertical axis wind turbines with leading-edge serrations and helical blades using CFD and Taguchi method. Energy conversion and management, 177, 107-121.
[24] Taguchi, G. (1986). Introduction to quality engineering: designing quality into products and processes (No. 658.562 T3).
[25] Taguchi, G. I. (1994). Taguchi methods: On-line production. Amer Supplier Inst.
[26] Taguchi, G., Elsayed, E. A., & Hsiang, T. C. (1989). Quality engineering in production systems. McGraw-Hill College.
[27] Taguchi, G. (1986). Introduction to quality engineering: designing quality into products and processes (No. 658.562 T3).
[28] Ku, K. U. J., Rao, S. S. (1998). Taguchi-aided search method for design optimization of engineering systems. Eng Opt, 30(1), 1-23.
[29] Wang, G.G. and Shan, S. (2006), "Review of Metamodeling Techniques in Support of Engineering Design Optimization," J. Mecha. Desgn, 129 (4), pp 370-380.
[30] Ahmed, M.Y.M. and Qin, N. (2009), "Surrogate-Based Aerodynamic Design Optimization: Use of Surrogates in Aerodynamic Design Optimization," 13th International Conference on AERO SCI & AVIATION TECHNOLOGY, ASAT-13-AE-14.
[31] Sarıkaya, M. and Güllü, A. (2014), " Taguchi design and response surface methodology-based analysis of machining parameters in CNC turning under MQL," Jou of Cle Prod, 65 (1), pp 604-616.
[32] Hernández, S. and Díaz, J. (2012), "An application of Taguchi’s method to robust design of aircraft structures," WIT Transactions on The Built Environment, 124 (1), pp 3-12.
[33] Gaitonde, V. N., Karnik, S. R., & Davim, J. P. (2015). Multiple performance optimization in drilling using Taguchi method with utility and modified utility concepts. In Materials Forming and Machining (pp. 99-115). Woodhead Publishing.
[34] Deng, L., Feng, B., & Zhang, Y. (2018). An optimization method for multi-objective and multi-factor designing of a ceramic slurry: Combining orthogonal experimental design with artificial neural networks. Ceramics Int, 44(13), 15918-15923.
[35] Goharimanesh, M., Akbari, A., & Tootoonchi, A. A. (2014). More efficiency in fuel consumption using gearbox optimization based on Taguchi method. J. Ind Engng Inter, 10(2), 1-8.
[36] Rao, S. S. (2015, November). Robust design of horizontal axis wind turbines using Taguchi method. In ASME International Mechanical Engineering Congress and Exposition (Vol. 57441, p. V06BT07A056). American Society of Mech Eng.
[37] Jureczko, M. E. Z. Y. K., Pawlak, M., & Mężyk, A. (2005). Optimisation of wind turbine lades. J mater. Pro. tech, 167(2-3), 463-471.
[38] Lanzafame, R., & Messina, M. (2009). Optimal wind turbine design to maximize energy production. Proceedings of the Institution of Mechanical Engineers, Part A: J. Pow Eng, 223(2), 93-101.
[39] Giguere, P., & Selig, M. S. (1999). Design of a tapered and twisted blade for the NREL combined experiment rotor (No. NREL/SR-500-26173). Lab, Golden, CO (US).
[40] Derakhshan, S., & Tavaziani, A. (2015). Study of wind turbine aerodynamic performance using numerical methods. Jou Cle Ene Tech, 3(2), 83-90.
[41] Abdulqadir, S. A., Iacovides, H., & Nasser, A. (2017). The physical modelling and aerodynamics of turbulent flows around horizontal axis wind turbines. Energy, 119, 767-799.
[42] S. V. PATANKAR, D. B. SPALDING. A calculation procedure for heat, mass, and momentum transfer in 3D parabolic flows. Int J He at Mass Transf, vol. 15, p. 1787e806, 1972.
[43] Menter, F. R., Kuntz, M., & Langtry, R. (2003). Ten years of industrial experience with the SST turbulence model. Turbulence, heat and mass transfer, 4(1), 625-632.
[44] Menter, F. (1993, July). Zonal two equation kw turbulence models for aerodynamic flows. In 23rd fluid dynamics, plasmadynamics, and lasers conference (p. 2906).
[45] Hand, M. M., Simms, D. A., Fingersh, L. J., Jager, D. W., Cotrell, J. R., Schreck, S., & Larwood, S. M. (2001). Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns (No. NREL/TP-500-29955). National Renewable Energy Lab., Golden, CO.(US).
[46] Duque, E. P., Burklund, M. D., & Johnson, W. (2003). Navier-Stokes and comprehensive analysis performance predictions of the NREL phase VI experiment. J. Sol. Energy Eng., 125(4), 457-467.
[47] Yelmule, M. M., & Vsj, E. A. (2013). CFD predictions of NREL phase VI rotor experiments in NASA/AMES wind tunnel. International Journal of Ren. Ene Research (IJRER), 3(2), 261-269.
[48] John D. Anderson, Jr. Fundamentals of Aerodynamics Sixth Edition Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland p-428. Mc Graw Hill.