تلفیق سامانه ناوبری اینرسی با سیستم ناوبری تصویری در بستر سخت‌افزار در حلقه برای یک پهپاد بال ثابت

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری هوافضا-دینامیک پرواز و کنترل، دانشکده هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشیار مهندسی هوافضا-دینامیک پرواز و کنترل، دانشکده هوافضا، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران، ایران

چکیده

هدف از این مقاله ارائه روش نوین در ناوبری تلفیقی اینرسی با استفاده از تصویر به‌منظور افزایش دقت توأم با حفظ قابلیت اطمینان و عدم واگرایی می‌باشد. حال به‌منظور تخمین پارامترهای ناوبری شامل سرعت، موقعیت و وضعیت (جهت‌گیری) از روش فیلتر کالمن گسسته استفاده‌شده است. در این روش از داده‌های واحد اندازه‌گیری اینرسی (IMU) متشکل از سه شتاب سنج و سه ژایروسکوپ به‌عنوان مدل سیستم ناوبری و تصویر به‌عنوان اندازه‌گیری استفاده‌شده است. بدین ترتیب برای استفاده از تصویر، ابتدا با روش تطبیق تصویر با رویکرد "سیفت" که به معنای استفاده از ویژگی‌های تغییرناپذیر با مقیاس تصویر است، مؤلفه‌های موقعیت صفحه‌ای پرنده استخراج می‌شود. در این راستا به‌منظور ارزیابی عملکرد و کارایی کلی سیستم و بر طرف کردن چالش هایی مانند تأخیر زمانی ارتباطات، انتخاب فرکانس کاری مناسب، اثر حجم محاسباتی پردازش تصویر و تلفیق روی میکروکنترلر نهایی، به‌صورت زمان حقیقی از بستر سخت‌افزار در حلقه استفاده‌شده است. نتایج پیاده‌سازی سخت‌افزار در حلقه نشان می‌دهد باوجود داشتن اندازه‌گیری تصویر در فرکانس خروجی نه‌چندان زیاد، رویکرد مذکور می‌تواند دقت مناسبی برای تخمین پارامترهای ناوبری پهپاد داشته باشد. این روش می‌تواند با حفظ دقت و هزینه، جایگزین مناسبی برای پهپادهایی باشد که از روش ناوبری بر پایه سیگنال‌های ماهواره‌ای (GPS) استفاده می‌کنند

کلیدواژه‌ها

موضوعات


[1]    M. A. Garratt and J. S. Chahl (2008) Vision-based terrain following for an unmanned rotorcraft. J. Field Robot 25(5): 284–301.
[2]    Y. Lin et al (2018) Autonomous aerial navigation using monocular visual-inertial fusion. J. F. Robot 35(1): 23–51.
[3]    C. Chen and H. Zhu (2018) Visual-inertial SLAM method based on optical flow in a GPS-denied environment. Ind. Robot An Int. J.
[4]    F. Daum (2005) Nonlinear filters: Beyond the       Kalman filter. IEEE Aerosp.Electron. Syst. Mag 20(8): 57–69.
[5]    D. Bagnell and B. Wagenknecht (2009) SLAM, fast SLAM, and Rao-Blackwellization. Statist. Techn. Robot.
[6]    E. A. Wan and R. Van Der Merwe (2000) The unscented Kalman filter for nonlinear estimation. In.Proc.IEEEAdaptSyst.Signal.Process.,Commun., Control Symp: 153–158.
[7]    X. Luo, J. Lv, and G. Sun (2020)  A visual-inertial navigation method for high-speed unmanned aerial vehicles. arXiv Prepr.
[8]    F. Zhu, Y. Shen, Y. Wang, J. Jia, and X. Zhang(2021) Fusing GNSS/INS/Vision with a Priori Feature Map for High-precision and Continuous Navigation. IEEE Sens. J 21(20) : 23370–23381.
[9]    Lowe, D. G (2004) Distinctive Image   Features from Scale Invariant Keypoints. Int. Journal of Comput.Vision 60(2): 91-110.
[10]  K. Lee and E. N. Johnson (2020) Robust outlier-adaptive filtering for vision-aided inertial navigation,.Sensors 20(7) : 20-36.
[11]  M. Wang, S. Berkane, and A. Tayebi (2021)  Nonlinear Observers Design for Vision-Aided Inertial Navigation Systems. IEEE Trans. Automat. Contr.
[12]  T. Hamel, M.-D. Hua, and C. Samson (2020)  Deterministic observer design for vision-aided inertial navigation,” in 2020 59th IEEE CDC: 1306–1313.
[13]  M. Wang, S. Berkane, and A. Tayebi (2021) Nonlinear Observers Design for Vision-Aided Inertial Navigation Systems. IEEE Trans. Automat. Contr.
[14]  K. Konolige, M. Agrawal, and J. Sola (2011)  Large-scale visual odometry for rough terrain. in Robotics Research. Berlin, Germany Springer-Verlag: 201–212.
[15]  S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart (2012) Realtime onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments.in Proc. IEEE Int. Conf. Robot. : 957–964.
[16]  M. Arbabmir and M. Ebrahimi (2020) Simultaneous filter tuning and calibration of the camera and inertial measurement unit camera for a vision inertial navigation system. IET Image Process 14(12): 2756–2767.
[17]  Y. Xu, T. Liu, B. Sun, Y. Zhang, S. Khatibi, and M. Sun (2021)  Indoor Vision/INS Integrated Mobile Robot Navigation Using Multimodel-Based Multifrequency Kalman Filter. Math. Probl. Eng.
[18]  G. Huang, M. Kaess, and J. J. Leonard (2014) Towards consistent visualinertial navigation. in Proc. IEEE Int. Conf. Robot: 4926–4933.
[19]  J. Liao, X. Li, X. Wang, S. Li, and H. Wang (2021) Enhancing navigation performance through visual-inertial odometry in GNSS-degraded environment. Gps Solut 25(2):1–18.
[20]  B. Ristic, S. Arulampalam, and N. Gordon, (2004)  Beyond the Kalman Filter:Particle Filters for Tracking Applications. Norwood, MA, USA: Artech House.
[21]  M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp(2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process 50(2): 174–188.
[22]  F. Danescu, S. Oniga, S. Nedevschi, and M.-M. Meinecke(2009) Tracking multiple objects using particle filters and digital elevation maps. in Proc. IEEE Intell. Vehicles Symp  4:88–93.
[23]  D. Simon (2006), Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. New York, NY, USA: Wiley.
[24]  F. Gustafsson et al (2002) Particle filters for positioning, navigation, and tracking. IEEE Trans. Signal Process. 50(2): 425–437.
[25]  F. Gustafsson and F. Gunnarsson (2005) Mobile positioning using wireless networks: Possibilities and fundamental limitations based on available wireless network measurements. IEEE Signal Process. Mag 22(4): 41–53.
[26]  M. Amami(2022)  Fast and Reliable Vision-Based Navigation for Real Time Kinematic Applications. Int. J. Res. Appl. Sci. Eng. Technol 10(2): 922–932.
 [27]  خوشنود ع م، علی زاده م (1400) تلفیق سامانه ناوبری اینرسی با سیستم ناوبری تصویری برای یک پهپاد بال ثابت. بیستمین کنفرانس انجمن هوافضا، اردیبهشت 1401.
[28]  Buede D.M (2002)  The Engineering Design of Systems, John Wiley.
 
[29]  P. H. Zipfel (2000) Modeling and simulation of aerospace vehicle dynamics: Aiaa.
[30]  Witkin, A.P. (1983) Scale-Space Filtering. In Artificial Intelligence. Proc. Int. Joint Conf. :1019–1022.
 [31] Shin, E.H(2001) Accuracy Improvement of Low Cost INS/GPS for Land Application. University of Calgary.
[32]  Schmidt, G.T. (1978)  Strapdown Inertial Systems-Theory and Applications. AGARD Lecture Series 95.
[33]  Bar-Itzhack, I.Y., and Berman, N (1988) Control Theoretic Approach to Inertial Navigation Systems. Journal of Guidance, 11(3):237-245.
[34]  A. Aminzadeh, M. A. Atashgah, and A. Roudbari (2018)Software in the loop framework for the performance assessment of a navigation and control system of an unmanned aerial vehicle. IEEE Aerosp. Electron. Syst. Mag 33(1):50–57.