[1] Pohanka, M. (2017) The piezoelectric biosensors: Principles and applications. Int. J. Electrochem. Sci. 12: 496-506.
[2] Elahi, H., Munir, K., Eugeni, M., Abrar, M., Khan, A., Arshad, A., and Gaudenzi, P. (2020) A review on applications of piezoelectric materials in aerospace industry. Integr. Ferroelectr. 211(1): 25-44.
[3] Li, Z.X., Yang, X.M. and Li, Z. (2006) Application of cement-based piezoelectric sensors for monitoring traffic flows, J. Transp. Eng. 132(7): 565-573.
[4] Uchino, K. (2008) Piezoelectric actuators. J. Electroceramics 20(3-4): 301-311.
[5] Yeh, C.H., Su, F.C., Shan, Y.S., Dosaev, M., Selyutskiy, Y., Goryacheva, I., and Ju, M.S. (2020) Application of piezoelectric actuator to simplified haptic feedback system. Sens. Actuator A Phys. 303: 111820.
[6] Gao, X., Yang, J., Wu, J., Xin, X., Li, Z., Yuan, X., Shen, X., and Dong, S. (2020) Piezoelectric actuators and motors: materials, designs, and applications. Adv. Mater. Technol. 5(1): 1900716, 2020.
[7] Spanner, K. and Koc, B. (2016) Piezoelectric motors, an overview. Actuators 5(1): 6.
[8] Schöner, H.P. (1992) Piezoelectric motors and their applications. Int. Trans. Electr. 2(6): 367-371.
[9] Uchino, K. (2008) Piezoelectric motors and transformers. In Piezoelectricity, Springer, Berlin, Heidelberg.
[10] Jiang, W., Mayor, F.M., Patel, R.N., McKenna, T.P., Sarabalis, C.J. and Safavi-Naeini, A.H. (2020) Nanobenders as efficient piezoelectric actuators for widely tunable nanophotonics at CMOS-level voltages. Commun. Phys. 3(1): 1-9.
[11] SoltanRezaee, M. and Bodaghi, M. (2020) Simulation of an electrically actuated cantilever as a novel biosensor. Sci. Rep. 10(1): 1-14.
[12] Hui, Y., Gomez-Diaz, J.S., Qian, Z., Alu, A. and Rinaldi, M. (2016) Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing. Nat. Commun. 7(1): 1-9.
[13] Bradley, D.I., George, R., Guénault, A.M., Haley, R.P., Kafanov, S., Noble, M.T., Pashkin, Y.A., Pickett, G.R., Poole, M., Prance, J.R. and Sarsby, M. (2017) Operating nanobeams in a quantum fluid. Sci. Rep. : 7(1), 1-8.
[14] Mindlin, R. D. and Tiersten, H. F. (1962) Effects of couple-stresses in linear elasticity. Arch. Rational Mech. Anal 11: 415–448.
[15] Toupin, R.A. (1964) Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2): 85-112.
[16] Hadi, A., Nejad, M.Z., Rastgoo, A., and Hosseini, M. (2018) Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory. Steel and Compos. Struct. 26(6): 663-672.
[17] Beni, Y.T., Mehralian, F. and Razavi, H. (2015) Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos. Struct. 120: 65-78.
[18] Yang, F. A. C. M., Chong, A. C. M., Lam, D. C. C., and Tong, P. (2002) Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10): 2731-2743.
[19] Park, S. K., and Gao, X. L. (2006) Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11): 2355.
[20] Mindlin, R. D., and Eshel, N. N. (1968) On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1): 109-124.
[21] Wang, J., Shen, H., Zhang, B., Liu, J., and Zhang, Y. (2018) Complex modal analysis of transverse free vibrations for axially moving nanobeams based on the nonlocal strain gradient theory. Phys. E: Low-Dimens. Syst. Nanostructures. 101: 85-93.
[22] Ebrahimi, F. and Barati, M.R. (2016) Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory. Appl. Phys. A 122(9): 843.
[23] Ansari, R., Pourashraf, T. and Gholami, R. (2015) An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin-Walled Struct. 93: 169-176.
[24] Wang, G. F., Feng, X. Q., and Yu, S. W. (2007) Surface buckling of a bending microbeam due to surface elasticity. EPL 77(4): 44002.
[25] Sahmani, S., Aghdam, M.M. and Bahrami, M. (2015) On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects. Compos. Struct. 121: 377-385.
[26] Eringen, A. C., and Edelen, D. G. B. (1972) On nonlocal elasticity. Int. J. Eng. Sci. 10(3): 233-248.
[27] Eringen, A. C. (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9): 4703-4710.
[28] Eringen, A.C. and Wegner, J.L. (2003) Nonlocal continuum field theories. Appl. Mech. Rev. 56(2): B20-B22.
[29] Ke, L.L. and Wang, Y.S. (2012) Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater. Struct. 21(2): 025018.
[30] Ke, Liao-Liang, Yue-Sheng Wang, and Zheng-Dao Wang. (2012) Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos. Struct. 94(6): 2038-2047.
[31] Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014) Buckling and post-buckling of size-dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings. Int. J. Struct. Stab. Dyn. 14(03): 1350067.
[32] Kaghazian, A., Hajnayeb, A. and Foruzande, H. (2017) Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory. Struct. Eng. Mech. 61(5): 617-624.
[33] Ragb, O., Mohamed, M. and Matbuly, M.S. (2019) Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods. Heliyon 5(6): 01856.
[34] Mohtashami, M. and Beni, Y.T. (2019) Size-dependent buckling and vibrations of piezoelectric nanobeam with finite element method. IJST-T CIV. ENG. 43(3): 563-576.
[35] Ebrahimi, F. and Barati, M.R. (2017) Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium. J. Braz. Soc. Mech. Sci. Eng. 39(3): 937-952.
[36] Zhang, D., Liu, M., Wang, Z., and Lei, Y. (2021) Thermo-electro-mechanical vibration of piezoelectric nanobeams resting on a viscoelastic foundation. J. Phys. Conf. Ser. 1759(1): 012029, 2021.
[37] Hao-nan, L., Cheng, L., Ji-ping, S., and Lin-quan, Y. (2021) Vibration Analysis of Rotating Functionally Graded Piezoelectric Nanobeams Based on the Nonlocal Elasticity Theory. J. Vib. Eng. Technol.:1-19.
[38] Li, Y.S., Ma, P. and Wang, W. (2016) Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory. J. Intell. Mater. Syst. Struct. 27(9): 1139-1149.
[39] Eltaher, M.A., Omar, F.A., Abdalla, W.S. and Gad, E.H. (2019) Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity. Waves Random Complex Media 29(2): 264-280.
[40] Tadi Beni, Y. (2016) Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J. Intell. Mater. Syst. Struct. 27(16): 2199-2215.
]41[ قربانپور آرانی، ع.، عبدالهیان، م.، و کلاهچی, ر. (۱۳۹۳) کمانش الکتروترمومکانیکی نانوتیر پیزوالکتریک با استفاده از تئوری های الاستیسیته گرادیان کرنشی و تیر ردی. نشریه علمی مکانیک سازه ها و شاره ها، ۳۳-۲۳ :(۳)۴
[42] Najafi, M. and Ahmadi, I. (2021) A nonlocal Layerwise theory for free vibration analysis of nanobeams with various boundary conditions on Winkler-Pasternak foundation. STEEL COMPOS. STRUCT. 40(1): 101-119.
[43] Srinivas, S., Rao, C. J., and Rao, A. K. (1970) An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates. J. SOUND VIB. 12(2): 187-199.
[44] Aimmanee, S., and Batra, R. C. (2007) Analytical solution for vibration of an incompressible isotropic linear elastic rectangular plate, and frequencies missed in previous solutions. J. SOUND VIB. 302(3) 613-620.
[45] Dong, K. and Wang, X. (2006) Influences of large deformation and rotary inertia on wave propagation in piezoelectric cylindrically laminated shells in thermal environment. INT. J. SOLIDS STRUCT. 43(6): 1710-1726.
[46] Liu, Y.F. and Wang, Y.Q. (2019) Thermo-electro-mechanical vibrations of porous functionally graded piezoelectric nanoshells. J. Nanomater. 9(2): 301.