مطالعه تجربی و عددی اعتبار نتایج در آزمایش میله فشاری هاپکینسون با در نظر گرفتن اصطکاک و ابعاد نمونه

نوع مقاله : مقاله مستقل

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت ایران

چکیده

دستگاه آزمایش میله فشاری هاپکینسون برای تعیین خواص مکانیکی وابسته به نرخ کرنش مواد استفاده می‌شود. پارامترهای مختلفی بر اعتبار نتایج این آزمایش تأثیرگذار است. در این مقاله اثر ابعاد نمونه آزمایش و همچنین اصطکاک بر نتایج آزمایش هاپکینسون فشاری به روش عددی و آزمایشگاهی موردبررسی قرارگرفته است. برای انجام شبیه‌سازی‌ها از نرم‌افزار ABAQUS/Explicit استفاده‌شده است. با انجام شبیه‌سازی، سیگنال‌هایی که در محل کرنش‌سنج هستند استخراج‌شده و با تئوری انتشار موج به منحنی تنش-کرنش تبدیل می‌گردند. با مقایسه این نمودارها با نمودار تنش-کرنش برای حالت‌های مختلف اصطکاک و ابعاد، اعتبار آزمایش و نتایج آن بررسی می‌شود. بررسی‌ها نشان می‌دهد افزایش اصطکاک باعث افزایش تنش و کاهش کرنش در نمودار تنش-کرنش خروجی شبیه‌سازی و آزمایش تجربی می‌شود و بهترین نتیجه در حالتی که اصطکاک صفر باشد حاصل می‌شود. مشاهده گردید با افزایش نسبت طول به قطر، اختلاف نتایج برای ضرایب اصطکاک مختلف کاهش می‌یابد. به طور مشخص در نتایج شبیه سازی اختلاف بیشینه تنش با فرض با و بدون روانکاری برای نسبت طول به قطر 25/0، 5/0، 0/1 و 5/1 بترتیب 58%، 18%، 9% و 5% می‌باشد و روند مشابهی در نتایج تجربی مشاهده می‌گردد. به عبارت دیگر با تغییر ابعاد نمونه آزمایش در حضور اصطکاک، تغییر در نمودار تنش-کرنش مشابه اثر افزایش نرخ کرنش مشاهده می‌شود که می‌تواند ناشی از اثر متقابل اندازه نمونه و اصطکاک باشد. هرچه اصطکاک افزایش پیدا کند خطای ایجاد شده کرنش کلی نمونه را کاهش و تنش تسلیم افزایش خواهد داد.

کلیدواژه‌ها

موضوعات


 
[1]  اعتمادی ا, زمانی اشنی ج, موسوی م, فرانچسکنی ا. )1393) طراحی، ساخت و آزمایش دستگاه میله هاپکینسون برای تعیین تنش جریان در فلز مس در نرخ کرنش های بالا. مواد پرانرژی. 9(2 (پیاپی 23)):-.
[2] Gray GT. (2000). Classic split-Hopkinson pressure bar testing. ASM Handbook, Mechanical testing and evaluation. American society for metals.
[3] Perogamvros N, Mitropoulos T, Lampeas G. (2016). Drop Tower Adaptation for Medium Strain Rate Tensile Testing. Exp Mech. 56(3):419-436.
[4] Jordan JL, Siviour CR, Sunny G, Bramlette C, Spowart JE. (2013). Strain rate-dependant mechanical properties of OFHC copper. J Mater Sci. 48(20):7134-7141.
[5] Bell JF. (1966). An experimental diffraction grating study of the quasi-static hypothesis of the split hopkinson bar experiment. J. Mech Phys Sol. 14(6):309-327.
[6] Lifshitz J, Leber H. (1994). Data processing in the split Hopkinson pressure bar tests. Int J Impact Eng. 15(6):723-733.
[7] Follansbee PS. (1985). The hopkinson bar. Metals handbook. 8(9):198-217.
[8] Zencker U, Clos R. (1999). Limiting conditions for compression testing of flat specimens in the split hopkinson pressure bar. Exp Mech. 39(4):343-348.
[9] Hartley RS, Cloete TJ, Nurick GN. (2007). An experimental assessment of friction effects in the split Hopkinson pressure bar using the ring compression test. Int J Impact Eng. 34(10):1705-1728.
[10] Meng H, Li QM. (2003). Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments. Int J Impact Eng. 28(5):537-555.
[11] Naghdabadi R, Ashrafi M, Arghavani J. (2012). Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test. Mat Sci Eng A-Struct. 539:285-293.
[12] Bagher Shemirani A, Naghdabadi R, Ashrafi MJ. (2016). Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split Hopkinson pressure bar apparatus. Constr Build Mater. 125:326-336.
[13] Mohamadzadeh M, Davoodi B. (2021). Finite element simulation of Hopkinson compression test to investigate the dynamic behavior of composite materials. J Sci Tech Comp. 7(4):1263-1270.
[14] Zhong WZ, Rusinek A, Jankowiak T, Abed F, Bernier R, Sutter G. (2015). Influence of interfacial friction and specimen configuration in Split Hopkinson Pressure Bar system. Tribol Int. 90:1-14.
[15] Siviour CR, Walley SM. (2018). Inertial and frictional effects in dynamic compression testing. The Kolsky-Hopkinson Bar Machine. Springer; p. 205-247.
[16] Tyas A, Ozdemir Z.(2014).On backward dispersion correction of Hopkinson pressure bar signals. Philos Trans R Soc A. 372(2023):20130291.
[17] Bragov AM, Lomunov AK, Lamzin DA, Konstantinov AY. (2019). Dispersion correction in split-Hopkinson pressure bar: theoretical and experimental analysis. Continuum Mech Therm.1-13.
[18] Majzoobi GH, Rahmani K, Atrian A. (2018). An Experimental Investigation into Wear Resistance of Mg-SiC Nanocomposite Produced at High Rate of Compaction. J Stress Anal. 3(1):35-45.
 
[19] Quinn R, Zhang L, Cox M, Townsend D, Cartwright T, Aldrich-Smith G, Hooper P, Dear J. (2020). Development and Validation of a Hopkinson Bar for Hazardous Materials. Exp Mech. 60(9):1275-1288.
[20] Chouhan H, Asija N, Gebremeskel SA, Bhatnagar N. (2017). Effect of Specimen Thickness on High Strain Rate Properties of Kevlar/Polypropylene Composite. Procedia Engineer. 173:694-701.
[21] Xu P, Tang L, Zhang Y, Ni P, Liu Z, Jiang Z, Liu Y, Zhou L. (2022). SHPB experimental method for ultra-soft materials in solution environment. International J. Imp Engng. 159:104051.
[22] Kim Y-B, Kim J. (2021). Influence of Specimen Thickness on the Acquisition of Al6061-T6 Material Properties Using SHPB and Verified by FEM. Mater. 14(1):205.
[23] Asadi P, Ashrafi MJ, Fakhimi A. (2021). Physical and numerical evaluation of effect of specimen size on dynamic tensile strength of rock. Comput Geotech.104538.
[24] Wang J, Ma L, Zhao F, Lv B, Gong W, He M, Liu P. (2022). Dynamic strain field for granite specimen under SHPB impact tests based on stress wave propagation. Underground Space.
]25[ نقدآبادی ر, اشرفی مج, سهراب‌پور س. (2011). مطالعه تجربی و عددی پارامترهای مؤثر بر شکل‌دهی موج ورودی در آزمایش میله فشاری هاپکینسون. فصلنامه مکانیک هوافضا. 6(4):-.
[26] Panowicz R, Konarzewski M. (2020). Influence of imperfect position of a striker and input bar on wave propagation in a split Hopkinson pressure bar (SHPB) setup with a pulse-shape technique. Appl Sci. 10(7):2423.
[27] Fan X, Suo T, Sun Q, Wang T. (2013). Dynamic mechanical behavior of 6061 al alloy at elevated temperatures and different strain rates. Acta Mech Solida Sin. 26(2):111-120.