تحلیل آیرودینامیک و ارتعاشات آزاد ورق‌های قطاعی ساخته شده از فوم‌های فلزی تقویت شده با نانو ذرات گرافنی

نوع مقاله : مقاله مستقل

نویسندگان

گروه مکانیک جامدات، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

چکیده

در این پژوهش رفتار آیرودینامیکی و ارتعاشی ورق‌های قطاعی ساخته شده از فوم‌های فلزی که با نانوذرات گرافنی تقویت شده‌اند، بررسی می‌شود. فوم‌های فلزی شاخه‌ای جدید و پیشرفته از مواد متخلخل هستند که مزیت مهم آن‌ها نسبت بالای استحکام به چگالی است. اگرچه بخاطر وزن کم، فوم‌های فلزی امروزه مورد استقبال قرار گرفته‌اند، ولی همین مورد سبب کاهش در استحکام آن‌ها می‌شود و یکی از ضعف‌های اساسی آن‌ها به شمار می‌رود که با اضافه کردن نانوذرات، این ضعف برطرف می‌شود. نانوذرات گرافنی امروزه به عنوان یکی از بهترین تقویت کننده‌ها شناخته می‌شوند. تحت میدان تصادفی گاوسی برای جامدات سلولی بسته، خواص موثر فوم فلزی زمینه بدست آورده شده و با استفاده از دو مدل میکرومکانیکی هالپین-تسای و قانون اختلاط، به ترتیب مدول الاستیسیته و سایر خواص مکانیکی موثر ورق بدست آورده می‌شوند. توزیع حفرات و همچنین پراکندگی نانوذرات گرافنی در راستای ضخامت، هر کدام بر اساس سه الگوی متفاوت صورت می‌گیرد و تاثیر آن‌ها بر رفتار ارتعاشاتی سازه‌ی مورد بررسی، مشاهده می‌شود. با بهره گرفتن از روش حساب تغییرات و اصل همیلتون، معادلات حاکم و شرایط مرزی مربوطه بدست آورده می‌شوند و به صورت عددی به حل آن‌ها پرداخته و در مورد تاثیر پارامترهای مختلف از جمله توزیع حفرات، پراکندگی نانوذرات و سایر پارامترهای با اهمیت بر نتایج بحث می‌شود.

کلیدواژه‌ها


[1] Terzaghi K von (1931) The influence of elasticity and permeability on the swelling of two-phase systems. Colloid Chem 3:65–88.
[2] Biot MA (1964) Theory of buckling of a porous slab and its thermoelastic analogy. J Appl Mech Trans ASME 31:194–198.
[3] Banhart J (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632.
[4] Guicking D, Lorenz E (1984) An active sound absorber with porous plate. J Vib Acoust Trans ASME 106:389–392.
[5] Lefebvre LP, Banhart J, Dunand DC (2008) Porous metals and metallic foams: Current status and recent developments. Adv Eng Mater 10:775–787.
[6] Chakraborty S, Dey T, Kumar R (2019) Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach. Compos Part B Eng 168:1–14.
[7] Ke LL, Yang J, Kitipornchai S (2010) Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos Struct 92:676–683.
[8] Heshmati M, Yas MH (2013) Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach. J Mech Sci Technol 27:3403–3408.
[9] Novoselov KS, Geim AK, Morozov S V., et al (2004) Electric field in atomically thin carbon films. Science (80- ) 306:666–669.
[10] Polit O, Anant C, Anirudh B, Ganapathi M (2019) Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect. Compos Part B Eng 166:310–327.
[11] Wang J, Li Z, Fan G, et al (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66:594–597.
[12] Chatterjee S, Wang JW, Kuo WS, et al (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10.
[13] Chen D, Yang J, Kitipornchai S (2017) Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos Sci Technol 142:235–245.
[14] Abdollahi Azghan M, Hosseini Abbandanak SN, Amirian U, Alizadeh A (2020) Effect of Functionalized Graphene Nanoplates on the Mechanical Properties of Vinil Ester/ Glass Fibers Composite. J Solid Fluid Mech 10:1–14.
[15] Detournay E, Cheng AH-D (1995) Fundamentals of poroelasticity. In: Analysis and design methods. Elsevier, pp 113–171.
[16] Bo J (1999) The vertical vibration of an elastic circular plate on a fluid-saturated porous half space. Int J Eng Sci 37:379–393.
[17] Leclaire P, Horoshenkov K V., Swift MJ, Hothersall DC (2001) The vibrational response of a clamped rectangular porous plate. J Sound Vib 247:19–31.
[18] Ebrahimi F, Habibi S (2016) Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate. Steel Compos Struct 20:205–225.
[19] Chen D, Yang J, Kitipornchai S (2016) Free and forced vibrations of shear deformable functionally graded porous beams. Int J Mech Sci 108–109:14–22.
[20] Chen D, Kitipornchai S, Yang J (2016) Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct 107:39–48.
[21] Wang YQ (2018) Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state. Acta Astronaut 143:263–271.
[22] Rezaei AS, Saidi AR (2015) Exact solution for free vibration of thick rectangular plates made of porous materials. Compos Struct 134:1051–1060.
[23] Rezaei AS, Saidi AR (2016) Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates. Compos Part B Eng 91:361–370.
[24] Gupta A, Talha M (2018) Influence of Porosity on the Flexural and Free Vibration Responses of Functionally Graded Plates in Thermal Environment. Int J Struct Stab Dyn 18:1850013.
[25] Kiran MC, Kattimani SC (2018) Assessment of porosity influence on vibration and static behaviour of functionally graded magneto-electro-elastic plate: A finite element study. Eur J Mech A/Solids 71:258–277.
[26] Mojahedin A, Jabbari M, Khorshidvand AR, Eslami MR (2016) Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory. Thin-Walled Struct 99:83–90.
[27] Farzaneh Joubaneh E, Mojahedin A, Khorshidvand AR, Jabbari M (2015) Thermal buckling analysis of porous circular plate with piezoelectric sensor-actuator layers under uniform thermal load. J Sandw Struct Mater 17:3–25.
[28] Mojahedin A, Joubaneh EF, Jabbari M (2014) Thermal and mechanical stability of a circular porous plate with piezoelectric actuators. Acta Mech 225:3437–3452.
[29] Xue Y, Jin G, Ma X, et al (2019) Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach. Int J Mech Sci 152:346–362.
[30] Barati MR, Zenkour AM (2019) Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions. Mech Adv Mater Struct 26:1580–1588.
[31] Li Q, Wu D, Chen X, et al (2018) Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler–Pasternak elastic foundation. Int J Mech Sci 148:596–610.
[32] Liu H, Wu H, Lyu Z (2020) Nonlinear resonance of FG multilayer beam-type nanocomposites: Effects of graphene nanoplatelet-reinforcement and geometric imperfection. Aerosp Sci Technol 98:105702.
[33] Gao K, Gao W, Chen D, Yang J (2018) Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Compos Struct 204:831–846.
[34] Shojaeefard MH, Saeidi Googarchin H, Ghadiri M, Mahinzare M (2017) Micro temperature-dependent FG porous plate: Free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT. Appl Math Model 50:633–655.
[35] Kim J, Żur KK, Reddy JN (2019) Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos Struct 209:879–888.
[36] Mohammad-Rezaei Bidgoli E, Arefi M (2019) Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation. J Sandw Struct Mater 109963621983930.
[37] Mohammadimehr M, Emdadi M, Rousta Navi B (2020) Dynamic stability analysis of microcomposite annular sandwich plate with carbon nanotube reinforced composite facesheets based on modified strain gradient theory. J Sandw Struct Mater 22:1199–1234.
[38] Mindlin RD (1968) Polarization gradient in elastic dielectrics. Int J Solids Struct 4:637–642.
[39] Hashemi S, Jafari AA (2020) Nonlinear Free Vibration Analysis of Bi-directional Functionally Graded Rectangular Plates. J Solid Fluid Mech 10:31–52.
[40] Arshid E, Khorshidvand AR (2018) Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin-Walled Struct 125:220–233.
[41] Arshid E, Amir S, Loghman A (2020) Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT. Int J Mech Sci 180:105656.
[42] Arshid E, Amir S, Loghman A (2021) Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates. Aerosp Sci Technol 106561.
[43] Khorshidi K, Ghasemi M, Fallah A (2018) Buckling Analysis of Functionally Graded Rectangular Microplate in Thermal Environment Based on Exponential Shear Deformation Theory using the Modified Couple Stress Theory. J Solid Fluid Mech 8:179–196.
[44] Wang KF, Wang B, Zhang C (2017) Surface energy and thermal stress effect on nonlinear vibration of electrostatically actuated circular micro-/nanoplates based on modified couple stress theory. Acta Mech 228:129–140.
[45] Jermsittiparsert K, Ghabussi A, Forooghi A, et al (2020) Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator. Mech Based Des Struct Mach.
[46] Mamandi A, Mirzaei ghaleh M (2020) Nonlinear Vibration of a Microbeam on a Winkler Foundation and Subjected to an Axial Load using Modified Couple Stress Theory. J Solid Fluid Mech 10:181–194.
[47] Ebrahimi F, Barati MR (2017) Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Compos Struct 159:433–444.
[48] Lin HG, Cao DQ, Xu YQ (2018) Vibration, Buckling and Aeroelastic Analyses of Functionally Graded Multilayer Graphene-Nanoplatelets-Reinforced Composite Plates Embedded in Piezoelectric Layers. Int J Appl Mech 10:1850023.
[49] Lighthill MJ (2012) Oscillating Airfoils at High Mach Number. Aerosp Res Cent 20:402–406.
[50] Ghoman SS, Azzouz MS (2012) Supersonic Aerothermoelastic Nonlinear Flutter Study of Curved Panels: Frequency Domain. Aerosp Res Cent 49:1075–1090.
[51] Ashley H, Zartarian G (2012) Piston Theory-A New Aerodynamic Tool for the Aeroelastician. Aerosp Res Cent 23:1109–1118.
[52] Forooghi A, Safarpour M, Alibeigloo A (2020) Investigation of Dynamics and Stability Behavior of Axially Moving Micro-Beams with Functionally Graded Property in the Longitudinal Direction. J Solid Fluid Mech 10:79–94.
[53] Civalek Ö (2004) Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng Struct 26:171–186.
[54] Shu C (2000) Differential Quadrature and Its Application in Engineering. Springer Science & Business Media
[55] Bert CW, Malik M (1996) Free vibration analysis of thin cylindrical shells by the differential quadrature method. J Press Vessel Technol Trans ASME 118:1–12.
[56] Babaei M, Hajmohammad MH, Asemi K (2020) Natural frequency and dynamic analyses of functionally graded saturated porous annular sector plate and cylindrical panel based on 3D elasticity. Aerosp Sci Technol 96:105524.
[57] Zhao J, Xie F, Wang A, et al (2019) Dynamics analysis of functionally graded porous (FGP) circular, annular and sector plates with general elastic restraints. Compos Part B Eng 159:20–43.
[58] Khorasani M, Soleimani-Javid Z, Arshid E, et al (2020) Thermo-Elastic Buckling of Honeycomb Micro Plates Integrated with FG-GNPs Reinforced Epoxy Skins with Stretching Effect. Compos Struct 113430.