[1] Katrašnik, T (2006) Analysis of fuel consumption reduction due to powertrain hybridization and downsizing of ICE. SAE Tech. Pap.
[2] Vu, T.-V., C.-K. Chen, and C.-W. Hung (2014) A model predictive control approach for fuel economy improvement of a series hydraulic hybrid vehicle. Energies, 7(11): p. 7017-7040.
[3] Boretti, A. and J. Stecki (2012) Hydraulic hybrid heavy duty vehicles-challenges and opportunities. 2012, SAE Tech. Pap.
[4] Filipi, Z. and Y. Kim (2010) Hydraulic hybrid propulsion for heavy vehicles: Combining the simulation and engine-in-the-loop techniques to maximize the fuel economy and emission benefits. OGST - Revue d'IFP Energies nouvelles. 65(1): p. 155-178.
[5] Kumar, A., et al (2018), Effect of hydraulic accumulator on pressure surge of a hydrostatic transmission system. J. Inst. Eng. (India): Series C, 99(2): p. 169-174.
[6] Rydberg, K.-E (2009) Energy efficient hydraulic hybrid drives. in 11: th SICFP’09, June 2-4, Linköping, Sweden.
[7] Wu, W., et al (2019) Energy efficiency of hydraulic regenerative braking for an automobile hydraulic hybrid propulsion method. Int. J. Green Energy. 16(13): p. 1046-1053.
[8] Wasbari, F., et al (2017) A review of compressed-air hybrid technology in vehicle system. Renew. Sust. Energ. Rev. 67: p. 935-953.
[9] Ramakrishnan, R., S.S. Hiremath, and M. Singaperumal (2012) Theoretical investigations on the effect of system parameters in series hydraulic hybrid system with hydrostatic regenerative braking. J. Mech. Sci. Technol. 26(5): p. 1321-1331.
[10] Yunpu, S. and W. Wuteng (2014) Parameter Design for the Energy Regeneration System of Series Hydraulic Hybrid Bus. Sens. Transducers. 165(2): p. 182.
[11] Bender, F.A., M. Kaszynski, and O. Sawodny (2013) Drive cycle prediction and energy management optimization for hybrid hydraulic vehicles. IEEE Trans. Veh. Technol. 62(8): p. 3581-3592.
[12] Midgley, W., H. Cathcart, and D. Cebon (2013) Modelling of hydraulic regenerative braking systems for heavy vehicles. Proc. Inst. Mech. Eng. D: J. Automob. Eng. 227(7): p. 1072-1084.
[13] Zhou, S., P. Walker, and N. Zhang (2020) Parametric design and regenerative braking control of a parallel hydraulic hybrid vehicle. Mech Mach Theory. 146: p. 103714.
[14] Yan, Y., G. Liu, and J. Chen (2010) Integrated modeling and optimization of a parallel hydraulic hybrid bus. Int. J. Automot. Technol. 11(1): p. 97-104.
[15] Ribeiro, D., et al (2015) Hybrid Hydraulic Refuse Truck Evaluation on Performance and Fuel Consumption: 3-Month Tests in the Rio de Janeiro Sanitation Department. SAE Tech. Pap.
[16] پایگانه, et al (2015) مطالعه امکان سنجی و طراحی سیستم قوای محرکه هیبرید هیدرولیک برای خودروی خدمات شهری. مهندسی مکانیک مدرس. 14(15): p. 307-315.
[17] Ramakrishnan, R., S.S. Hiremath, and M. Singaperumal (2014) Design strategy for improving the energy efficiency in series hydraulic/electric synergy system. Energy. 67: p. 422-434.
[18] Hui, S., et al (2011) Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles. Energy Convers. Manag. 52(1): p. 668-674.
[19] Ding, R., et al (2018) Programmable hydraulic control technique in construction machinery: Status, challenges and countermeasures. Autom. Constr. 95: p. 172-192.
[20] Midgley, W.J. and D. Cebon (2012) Comparison of regenerative braking technologies for heavy goods vehicles in urban environments. Proc. Inst. Mech. Eng. D: J. Automob. Eng. 226(7): p. 957-970.
[21] Hui, S., J. Ji-Hai, and W. Xin (2009) Torque control strategy for a parallel hydraulic hybrid vehicle. J. Terramechanics. 46(6): p. 259-265.
[22] محمدرضا حائری, ی., et al (2012) طراحی استراتژی کنترل بهینه آنلاین برای اتوبوس هیبرید هیدرولیک. کنترل. سال هشتم(1): p. 1-10.
[23] Zhou, H., et al (2020) Design and validation of a novel hydraulic hybrid vehicle with wheel motors. Sci. Prog. 103(1): p. 0036850419878024.
[24] Thomas, J (2014) Drive cycle powertrain efficiencies and trends derived from EPA vehicle dynamometer results. SAE Int. J. Passeng. Cars - Mech. Syst. 7(2014-01-2562): p. 1374-1384.