شناسایی ترک در تیرها تحت اثر نیروی متحرک به کمک تبدیل هیلبرت-هوانگ

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری، عمران-سازه، دانشگاه تهران، تهران

2 دانشیار، مهندسی عمران-سازه، دانشگاه علم و فرهنگ، تهران

3 کارشناسی ارشد، عمران-سازه، دانشگاه تهران، تهران

چکیده

شناسایی و ترمیم به موقع آسیب در سازه ها (مانند ترک در عرشه پل ها) ، به ویژه در سازه هایی که همواره تحت بارهای متناوب قرار دارند از اهمیت بسزایی برخوردار می باشد. در سالیان اخیر روش های جدیدی بر پایه پاسخ های دینامیکی ثبت شده از سازه ارائه شده است که اکثر این روش ها بر اساس روش های به روز رسانی مدل توسعه یافته و معمولاً از نظر محاسباتی بسیار پر هزینه می باشند. برای غلبه بر مشکل فوق، در این مطالعه از یک روش بر پایه تبدیل هیلبرت-هوانگ استفاده می شود. در این روش پل به صورت یک تیر اولر- برنولی و وسیله نقلیه نیز در چهار حالت مختلف به صورت بار متحرک، جرم متحرک، نوسانگر متحرک و سیستم متحرک مدل می شود. نتایج نشان می دهند که در همه ی حالات، روش بررسی شده با دقت قابل قبولی قادر به شناسایی ترک در عرشه پل ها می باشد.

کلیدواژه‌ها


[1] Nikkhoo A, Rofooei F, Shadnam M (2007) Dynamic behavior and modal control of beams under moving mass. J Sound Vib 306(3-5): 712-724
[2] Stăncioiu D, Ouyang H, Mottershead JE (2008) Vibration of a beam excited by a moving oscillator considering separation and reattachment. J Sound Vib 310(4-5): 1128-1140
[3] Muscolino G, Palmeri A, Sofi A (2009) Absolute versus relative formulations of the moving oscillator problem. Int J Solids Struct 46(5): 1085-1094
[4] Kiani K, Nikkhoo A, Mehri B (2010) Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method. Acta Mech Sin 26(5): 721-733
[5] Yang Y-B, Lin C, Yau J (2004) Extracting bridge frequencies from the dynamic response of a passing vehicle. J Sound Vib 272(3-5): 471-493
[6] Van Do VN, Ong TH, Thai CH (2017) Dynamic responses of Euler–Bernoulli beam subjected to moving vehicles using isogeometric approach. Appl Math Model 51:405-428
[7] Mofid M, Tehranchi A, Ostadhossein A (2010) On the viscoelastic beam subjected to moving mass. Adv Eng Softw 41(2): 240-247
[8] Yang Y, Zhang B, Wang T, Xu H, Wu Y (2019) Two-axle test vehicle for bridges: Theory and applications. Int J Mech Sci 152: 51-62
[9] Attar M (2012) A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions. Int J Mech Sci 57(1): 19-33
[10] Moezi SA, Zakeri E, Zare A (2018) A generally modified cuckoo optimization algorithm for crack detection in cantilever Euler-Bernoulli beams. Precis Eng 52: 227-241
[11] Maghsoodi A, Ghadami A, Mirdamadi HR (2013) Multiple-crack damage detection in multi-step beams by a novel local flexibility-based damage index. J Sound Vib 332(2): 294-305
[12] Law S, Zhu X (2004) Dynamic behavior of damaged concrete bridge structures under moving vehicular loads. Eng Struct 26(9): 1279-1293
[13] Barad KH, Sharma D, Vyas V (2013) Crack detection in cantilever beam by frequency based method. Procedia Eng 51: 770-775
[14] Gillich G-R, Praisach Z-I (2014) Modal identification and damage detection in beam-like structures using the power spectrum and time–frequency analysis. Signal Processing 96: 29-44
[15] Khnaijar A, Benamar R (2017) A new model for beam crack detection and localization using a discrete model. Eng Struct 150: 221-230
[16] Nguyen KV (2014) Mode shapes analysis of a cracked beam and its application for crack detection. J Sound Vib 333(3): 848-872
[17] Oshima Y, Yamamoto K, Sugiura K (2014) Damage assessment of a bridge based on mode shapes estimated by responses of passing vehicles. Smart Struct Syst 13(5): 731-753
[18] Altunışık AC, Okur FY, Kahya V (2017) Automated model updating of multiple cracked cantilever beams for damage detection. J Constr Steel Res 138: 499-512
[19] Schommer S, Nguyen VH, Maas S, Zürbes A (2017) Model updating for structural health monitoring using static and dynamic measurements. Procedia Eng 199: 2146-2153
[20] Mcgetrick P, Kim C, editors (2012) Wavelet based damage detection approach for bridge structures utilising vehicle vibration. GJBS09
[21] Ding K, Chen TP, editors (2013) Study on damage detection of bridge based on wavelet multi-scale analysis. Adv Mat Res Trans Tech Publ.
[22] Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Math Phys Eng Sci 454(1971): 903-995.
[23] Roveri N, Carcaterra A (2012) Damage detection in structures under traveling loads by Hilbert–Huang transform. Mech Syst Signal Process 28: 128-144
[24] Nikkhoo A, Karegar H, Mohammadi RK, Hejazi F, editors (2020) Improving the performance of the autoregressive method in modal identification of output-only systems using the empirical mode decomposition. Structures, Elsevier.
[25] Nikkhoo A, Karegar H, Karami Mohammadi R (2021) Improving the performance of the autoregressive method in modal identification of output-only systems using Hilbert vibration decomposition method. Sharif Journal of Civil Engineering.
[26] Nikkhoo A, Karegar H, Karami Mohammadi R, Hajirasouliha I (2020) An acceleration-           based approach for crack localisation in beams subjected to moving oscillators. J Vib Control: 1077546320929821
[27] Lin HP, Chang SC, Wu J-D (2002) Beam vibrations with an arbitrary number of cracks. J Sound Vib 258(5): 987-99.
[28] Zhang Q-L, Vrouwenvelder A, Wardenier J (2001) Numerical simulation of train–bridge interactive dynamics. Comput Struct 79(10): 1059-1075.