[1] Capretto L, Cheng W, Hill M, Zhang X (2011) Micromixing within microfluidic devices. Top Curr Chem 27-68.
[2] Reuss F (1809) Charge-induced flow. Proceedings of the Imperial Society of Naturalists of Moscow 3: 327-344.
[3] Molho J, Herr A, Desphande M, Gilbert J, Garguilo M, Paul P, John P, Woudenberg T, Connel C (1998) Fluid transport mechanisms in microfluidic devices. Proc ASME Mems 66: 69-76.
[4] Cummings E, Griffiths S, Nilson R, Paul P (2000) Conditions for similitude between the fluid velocity and electric field in electroosmotic flow. Anal Chem 72(11): 2526-2532.
[5] Yang C, Li D (1998) Analysis of electrokinetic effects on the liquid flow in rectangular microchannels. Colloid Surface A 143(2-3): 339-353.
[6] Patankar N, Hu H (1998) Numerical simulation of electroosmotic flow. Anal Chem 70(9): 1870-1881.
[7] Ren L, Li D (2001) Electroosmotic flow in heterogeneous microchannels. J Colloid Interf Sci 243(1): 255-261.
[8] Hu J, Chao C (2007) A study of the performance of microfabricated electroosmotic pump. Sensor Actuat A-Phys 135(1): 273-282.
[9] Dutta P, Beskok A, Warburton T (2002) Numerical simulation of mixed electroosmotic/pressure driven microflows. Numer Heat Tr A-Appl 41(2): 131-148.
[10] Dutta P, Beskok A (2001) Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite Debye layer effects. Anal Chem 73(9): 1979-1986.
[11] Ramirez J, Conlisk A (2006) Formation of vortices near abrupt nano-channel height changes in electro-osmotic flow of aqueous solutions. Biomed Microdevices 8(4): 325-330.
[12] Bag N, Bhattacharyya S (2018) Electroosmotic flow of a non-Newtonian fluid in a microchannel with heterogeneous surface potential. J Non-Newton Fluid 259: 48-60.
[13] Sun C, Shie S (2012) Optimization of a diverging micromixer driven by periodic electroosmotics. Microsyst Technol 18(9-10): 1237-1245.
[14] Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1): 389-396.
[15] Bonet J, Lok T (1999) Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput Method Appl M 180(1-2): 97-115.
[16] Fatehi R, Manzari M (2011) Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives. Comput Math Appl 61(2): 482-498.
[17] Lee E, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P (2008) Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J Comput Phys 227(18): 8417-8436.
[18] Fatehi R, Manzari M (2011) A remedy for numerical oscillations in weakly compressible smoothed particle hydrodynamics. Int J Numer Meth Fl 67(9): 1100-1114.
[19] Shamsoddini R, Aminizadeh N, Sefid M (2015) An improved WCSPH method to simulate the non-Newtonian power law fluid flow induced by motion of a square cylinder. Cmes-Comp Model Eng 105(3): 209-230