ارائه پیکره‌بندی جدید پروفیل‌های کرکره‌ای حاصل از منحنی‌های دایره‌ای مماس بر یکدیگر جهت افزایش قابلیت جذب انرژی

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشکده مهندسی مکانیک دانشگاه صنعتی قم

2 دانشیار، مهندسی مکانیک، دانشکده مهندسی مکانیک دانشگاه صنعتی قم

چکیده

سازه‌های جدار نازک به طور گسترده برای جذب انرژی در تصادفات جاده‌ای مورد استفاده قرار می‌گیرند. در این مقاله، طرح جدیدی از پروفیل‌های کرکره‌ای مبتنی بر منحنی حاصل از کمان‌های دایره‌ای مماس بر یکدیگر برای افزایش قابلیت جذب انرژی سازه‌های جدار نازک ارائه شده است. با توجه به اینکه برای ارزیابی قابلیت ضربه‌پذیری از کد اجزاء محدود LS-Dyna استفاده شده است، به قصد صحه‌سنجی مدل‌سازی و روش حل، ابتدا نتایج با نتایج تجربی مقایسه شده است که حاکی از آن است، شبیه‌سازی به خوبی می‌تواند رفتار سازه را پیش‌بینی نماید. این پروفیل‌ها تحت بار شبه‌استاتیکی و در بارگذاری‌های محوری، جانبی و مایل بررسی شده و نتایج با نتایج حاصل از پروفیل‌های معمول مربعی، دایره‌ای و مربعی چند سلول مقایسه شده است. نتایج نشان می‌دهد، پروفیل‌های کرکره‌ای ارائه شده می‌توانند پارامترهای جذب انرژی ویژه را تا %26 و راندمان نیروی ضربه‌ای را تا %10 نسبت به پروفیل‌های معمول چند سلول افزایش دهند. از طرفی استفاده از صفحات متقاطع در داخل پروفیل‌های کرکره‌ای از ایجاد مود تغییر شکل کلی جلوگیری می‌نماید. در بارگذاری جانبی مقدار جذب انرژی موثر حدودا 20% کمتر از پروفیل چند سلول معمول است اما راندمان نیروی ضربه‌ای به طور قابل ملاحظه‌ای بیشتر است.

کلیدواژه‌ها


[1]  Lu G, Yu T X (2003) Energy absorption of structures and materials. Elsevier, Cambridge, England.
[2]  Baroutaji A, Sajjia M, Olabi A (2017) On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments. Thin Wall Struct 118: 137-163.
[3]  Ha N S, Lu G (2020) Thin-walled corrugated structures: A review of crashworthiness designs and energy absorption characteristics. Thin Wall Struct 157: 106995.
[4] معتمدی م، ناطقی‌الهی ف، ضیایی‌فر م، کریمی م (1385) مطالعه استهلاک انرژی در لوله‌های جدارنازک آکاردئونی تحت نیروی محوری رفت و برگشتی. مجله استقلال 120-101 :(1)25.
[5]  Abdewi EF, Sulaiman S, Hamouda AMS, Mahdi E (2006) Effect of geometry on the crushing behaviour of laminated corrugated composite tubes. J Mater Process Technol 172: 394-399.
[6]  Abdewi E F, Sulaiman S, Hamouda A M S, Mahdi E (2008) Quasi-static axial and lateral crushing of radial corrugated composite tubes. Thin-Walled Structures 46: 320-332.
[7]  Fan Z, Lu G, Liu K (2013) Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Eng Struct 55: 80-89.
[8]  Liu S, Tong Z, Tang Z, Liu Y (2015) Bionic design modification of non-convex multi-corner thin-walled columns for improving energy absorption through adding bulkheads. Thin Wall Struct 88: 70-81.
[9]  Abbasi M, Reddy S, Ghafari Nazari A, Fard M (2015) Multiobjective crashworthiness optimization of multi-cornered thin-walled sheet metal members. Thin Wall Struct 89: 31-41.
[10] Liu W, Lin Z, Wang N, Deng X (2016) Dynamic performances of thin-walled tubes with star-shaped cross section under axial impact. Thin Wall Struct 100: 25-37.
[11] Wang J, Zhang Y, He N, Wang C H (2018) Crashworthiness behavior of Koch fractal structures. Mater Design 144: 229-244.
[12] Sun G, Pang T, Fang J, Li G, Li Q (2017) Parameterization of criss-cross configurations for multiobjective crashworthiness optimization. Int J Mech Sci 124-125: 145-157.
[13] Tang Z, Liu S, Zhang Z (2012) Energy absorption properties of non-convex multi-corner thin-walled columns. Thin Wall Struct 51: 112-120.
[14] Wu S, Sun G, Wu X, Li G, Li Q (2017) Crashworthiness analysis and optimization of fourier varying section tubes. Int J Nonlin Mech 92:41-58.
[15] Deng X, Liu W, Lin Z (2018) Experimental and theoretical study on crashworthiness of star-shaped tubes under axial compression. Thin Wall Struct 130: 321-331.
[16] Deng X, Liu W, Lin J (2018) On the crashworthiness analysis and design of a lateral corrugated tube with a sinusoidal cross-section. Int J Mech Sci 141: 330-340.
[17] Li Y, You Z (2018) External inversion of thin-walled corrugated tubes. Int J Mech Sci 144: 54-66.
[18] Li Y, You Z (2019) Origami concave tubes for energy absorption. Int J Solids Struct 169: 21-40.
[19] Li Z, Yao S, Ma W, Xu P, Che Q (2019) Energy-absorption characteristics of a circumferentially corrugated square tube with a cosine profile. Thin Wall Struct 135: 385-399.
[20] Li Z, Ma W, Xu P, Yao S (2019) Crushing behavior of circumferentially corrugated square tube with different cross inner ribs. Thin Wall Struct 144: 106370.
[21] Li Z, Ma W, Xu P, Yao S (2020) Crashworthiness of multi-cell circumferentially corrugated square tubes with cosine and triangular configurations. Thin Wall Struct 165: 105205.
[22] پیرمحمد س، اسماعیلی مرزدشتی س (1396) مقایسه عملکرد جذب انرژی سازه‌های چندجداره مربعی و دایره‌ای با استفاده از روش کپراس و بهینه‎سازی سازه دایروی با استفاده از روش سطح پاسخ. نشریه علمی مکانیک سازه‌ها و شاره‌ها 147-133 :(3)7.
[23] Tang Z, Liu S, Zhang Z (2013) Analysis of energy absorption characteristics of cylindrical multi-cell columns.  Thin Wall Struct 62: 75-84.
]24[ علوی‌نیا ع، فرشاد ع (1393) بررسی تجربی و عددی تاثیر هندسه مقطع و فوم فلزی بر روی تغییرشکل و ویژگی‌های جذب انرژی لوله‌های جدارنازک. نشریه علمی مکانیک سازه‌ها و شاره‌ها 63-51 :(1)4.
[25] Zhang Z, Zhang H (2013) Energy absorption of multi-cell stub columns under axial compression.  Thin Wall Struct 68: 156-163.
[26] Jones N, Abramowicz W (1985) Static and dynamic axial crushing of circular and square tubes.  Reid SR, Ed Met Form impact Mech 47: 225-247.