[1] Mangardich D, Abrari F, Fawaz Z (2019) A fracture mechanics-based approach for the fretting fatigue of aircraft engine fan dovetail attachments. Int J Fatigue 129: 105213.
[2] Farris NH, Murthy H, Matlik JF (2003) Chapter 4.11, Fretting fatigue. Comprehensive Structural Integrity 4: 281-326.
[3] Pistons and engine testing. Editor: MAHLE GmbH, Springer Vieweg, (2016).
[4] Sunde SL, Berto F, Haugen B (2018) Predicting fretting fatigue in engineering design. Int J Fatigue 117: 314-326.
[5] Hills DA, Nowell D (2014) Mechanics of fretting fatigue-Oxford's contribution. Tribol Int 76: 1-5.
[6] Zeren M (2007) The effect of heat-treatment on aluminum-based piston alloys.
Mater Design 28: 2511-2517.
[7] Peng J, Wang B, Jin X, Xu Z, Liu J, Cai Z, Luo Z, Zhu M (2019) Effect of contact pressure on torsional fretting fatigue damage evolution of a 7075 aluminum alloy. Tribol Int 137: 1-10.
[8] Peng J, Jin X, Xu Z, Zhang J, Cai Z, Luo Z, Zhu M (2018) Study on the damage evolution of torsional fretting fatigue in a 7075 aluminum alloy. Wear 402-403: 160-168.
[9] Peng J, Liu J, Cai Z, Shen M, Song C, Zhu M (2013) Study on bending fretting fatigue damages of 7075 aluminum alloy. Tribol Int 59: 38-46.
[10] Cai Z, Zhu M, Lin X (2010) Friction and wear of 7075 aluminum alloy induced by torsional fretting. Trans Nonferr Metal Soc 20(3): 371-376.
[11] Sangral S, Achyuth K, Patel M, Jayaprakash M (2019) Effect of fretting on fatigue behavior of Al alloys considering environmental effect. Mater Today: Proc 15(1): 119-125.
[12] de Pannemaecker A, Fouvry S, Buffiere JY, Brochu M (2018) Modelling the fretting fatigue crack growth: from short crack correction strategies to microstructural approaches. Int J Fatigue 117: 75-89.
[13] Kim K, Yoon MJ (2014) Fretting fatigue simulation for aluminum alloy using cohesive zone law approach. Int J Mech Sci 85: 30-37.
[14] Muthu J (2014) Fatigue life of 7075-T6 aluminum alloy under fretting condition. Theor Appl Fract Mech 74: 200-208.
[15] Ferre R, Fouvry S, Berthel B, Amargier R, Ruiz-Sabariego JA (2013) Prediction of the fretting fatigue crack nucleation endurance of a Ti-6V-4Al/Ti-6V-4Al interface: Influence of plasticity and tensile/shear fatigue properties. Procedia Eng 66: 803-812.
[16] Sarhan AD, Zalnezhad E, Hamdi M (2013) The influence of higher surface hardness on fretting fatigue life of hard-anodized aerospace Al7075-T6 alloy. Mater Sci Eng A 560: 377-387.
[17] Shinde SR, Hoeppner DW (2006) Fretting fatigue behavior in 7075-T6 aluminum alloy. Wear 261(3-4): 426-434.
[18] Du D, Liu D, Zhang X, Tang J. (2019) Fretting fatigue behaviors and surface integrity of Ag-TiN soft solid lubricating films on titanium alloy. Appl Surf Sci 488: 269-276.
[19] Gean MC, Farris TN (2009) Elevated temperature fretting fatigue of Ti-17 with surface treatments. Tribol Int 42: 1340-1345.
[20] Chakherlou TN, Mirzajanzadeh M, Vogwell J (2009) Effect of hole lubrication on the fretting fatigue life of double shear lap joints: An experimental and numerical study. Eng Fail Anal 16: 2388-2399.
[21] Gou T, Liu Z, Correia J, de Jesus MP (2020) Experimental study on fretting-fatigue of bridge cable wires. Int J Fatigue 131: 105321.
[22] Chao J (2019) Fretting-fatigue induced failure of a connecting rod. Eng Fail Anal 96: 186-201.
[23] Hojjati-Talemi R, Zahedi A, De Baets P (2015) Fretting fatigue failure mechanism of automotive shock absorber valve, Int J Fatigue 73: 58-65.
[24] Zalnezhad E, Sarhan AAD, Jahanshahi P (2014) A new fretting fatigue testing machine design, utilizing rotating-bending principal approach. Int J Adv Manuf Technol 70: 2211-2219.
[25] Neu RW (2011) Progress in standardization of freeting terminology and testing. Tribol Int 44: 1371-1377.
[26] Azadi M, Zolfaghari M, Hajiesmaeili MH, Rezanezhad S (2019) Fretting fatigue test machine with functionality in lubricant and high temperature. Patent Number: 98399, International Category: G01N/34.
[27] Technical Report (2008) Piston Ring, Irankhodro Powertrain Company.
[28] Ahmed Ali M, Xianjun H, Turkson R, Ezzat M (2015) An analytical study of tribological parameters between piston ring and cylinder liner in internal combustion engines. Proc Inst Mech Eng Part K: J Multi-body Dyn, 4: 329-349.
[29] Takiguchi M, Ando H, Takimoto T, Uratsuka A (1996) Characteristics of friction and lubrication of two-ring piston. JSAE Review 17: 11-16.
[30] Achyuth K, Patel M, Sangral M, Jayaprakash M (2019) Fretting wear degradation behavior of Al-Si-Ni based cast aluminum alloy under different environment. Mater Today: Proc 15: 103-108.
[31] Yang Y, Wang C, Gesang Y, Shang H, Wang R, Liang Y, Wang T, Chen Q, Shao T (2021) Fretting wear evolution of γ-TiAl alloy. Tribol Int 154: 106721.
[32] Reddappa HN, Suresh KR, Niranjan HB, Satyanarayana KG (2012) Studies on mechanical and wear properties of Al6061/beryl composites. J Miner Mater Charact Eng 11: 704-708.
[33] Gladston JAK, Dinaharan I, Sheriff NM, Selvam JDR (2017) Dry sliding wear behavior of AA6061 aluminum alloy composites reinforced rice husk ash particulates produced using compocasting. J Asian Ceram Soc 5: 1-9.
[34] Choi HJ, Lee SM, Bae DH (2010) Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes. Wear 270: 12-18.
[35] Kontou A, Talor RI, Spikes HA (2021) Effects of dispersant and ZDDP additives on fretting wear. Tribol Lett 69: 6.
[36] Azadi M, Bahmanabadi H, Gruen F, Winter G (2020) Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay-particles and heat treatment. Mater Sci Eng A 788: 139497.
[37] Li Y, Yang Y, Wu Y, Wang L, Liu X (2010) Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al-Si piston alloys. Mater Sci Eng A 527(26): 7132-7137.
[38] Zolfaghari M, Azadi M, Azadi M (2021) Characterization of high-cycle bending fatigue behaviors for piston aluminum matrix SiO2 nano-composites in comparison with aluminum-silicon alloys. Int J Metalcast 15: 152-168.
[39] Rezanejad S, Azadi M, Azadi M (2019) Influence of heat treatment on high‑cycle fatigue and fracture behaviors of piston aluminum alloy under fully‑reversed cyclic bending. Met Mater Int 27: 860-870.
[40] Budynas RG, Nisbett JK (2019) Shigley's Mechanical Engineering Design. 11th edn. McGraw-Hill.
[41] Liu J, Zhang Q, Zue Z, Xiong Y, Ren F, Volinsky A (2013) Microstructure evolution of Al-12Si-CuNiMg alloy under high temperature low cycle fatigue. Mater Sci Eng A 574: 186-190.
[42] Zhang G, Zhang J, Li B, Cai W (2013) Double-stage hardening behavior and fracture characteristics of a heavily alloyed Al-Si piston alloy during low-cycle fatigue loading. Mater Sci Eng A 561: 26-33.
[43] Pape JA, Neu RW (2007) Subsurface damage development during fretting fatigue of high strength steel. Tribol Int 40: 1111-1119.
[44] Azadi M, Rezanezhad S, Zolfaghari M, Azadi M (2020) Investigation of tribological and compressive behaviors of Al/SiO2 nanocomposites after T6 heat treatment. Sadhana 45: 28.