تحلیل اندرکنش سیال-سازه در خط لوله با انشعاب متقارن و غیرمتقارن حاوی جریان توربولانس: مطالعه موردی

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه صنعتی کرمانشاه، کرمانشاه

2 گروه مهندسی مکانیک، دانشگاه صنعتی کرمانشاه، کرمانشاه، ایران

چکیده

تحلیل اندرکنش سیال-سازه خط لوله حاوی سیال، یکی از مسائل قابل توجه در صنایع نفت و گاز می‌باشد. در این پژوهش، یکی از خطوط فرایندی شرکت پتروشیمی بیستون حاوی سیال پارافین (حدود 90 درصد) و الفین (حدود 10 درصد) با دو طرح متفاوت متقارن و غیر متقارن مورد بررسی قرار گرفته است. بررسی‌ها شامل دو بخش عملی و مدلسازی می باشد. در بخش مدلسازی، ابتدا خط لوله در نرم افزار انسیس- فلوئنت شبیه‌سازی شده و نتایج اجزای محدود به صورت کوپل یکطرفه به بخش طراحی نرم افزار وارد می شود. نتایج بررسی‌های عملی و اجزای محدود نشان داد که علت اصلی ارتعاش این خط ناشی از اغتشاشات و فشار نوسانی از جانب سیال بر جداره لوله می‌باشد و با ترکیبی از قیدهای الاستیک و ثابت، می‌توان جابجایی خط لوله را کنترل کرد. همخوانی بسیار خوبی بین نتایج شبیه‌سازی و نتایج عملی وجود دارد. همچنین نتایج نشان داد که دامنه ارتعاش پس از اقدامات حمایتی مرکب، در خط لوله با انشعاب نامتقارن، تا 94 درصد، و در طرح متقارن تا 86 درصد کاهش دارد. بنابراین ساپورت‌گذاری مرکب، نتایج مطلوبی در پی خواهد داشت.

کلیدواژه‌ها


[1] Zhai HB, Wu ZY, Liu YS, Yue ZF (2013) In-plane dynamic response analysis of curved pipe conveying fluid subjected to random excitation. Nucl Eng Des 256: 214-226.‏
[2] Mirramezani M, Mirdamadi HR, Ghayour M (2013) Innovative coupled fluid–structure interaction model for carbon nano-tubes conveying fluid by considering the size effects of nano-flow and nano-structure. Comput Mater Sci 77:161-171.‏
[3] Abolpour B, Shamsoddini R (2019) A predictive formula for the Nusselt number of compressible laminar fluid flow passing the thermal developing zone of a hot tube. Heat Transfer Asian Res 48(4): 1529-1543.‏
[4] He Y, Bayly AE, Hassanpour A (2018) Coupling CFD-DEM with dynamic meshing: A new approach for fluid-structure interaction in particle-fluid flows. Powder Technol 325: 620-631.‏
[5] Tuković Ž, Karač A, Cardiff P, Jasak H, Ivanković A (2018) OpenFOAM finite volume solver for fluid-solid interaction. Trans FAMENA 42(3): 1-31.‏
[6] Zhai HB, Wu ZY, Liu YS, Yue ZF (2013) In-plane dynamic response analysis of curved pipe conveying fluid subjected to random excitation. Nucl Eng Des 256: 214-226.‏
[7] Shankarachar SM, Radhakrishna M, Babu PR (2015) An experimental study of flow induced vibration of elastically restrained pipe conveying fluid. In Proceedings of the 15th International Mechanical Engineering Congress & Exposition IMECE15.‏
[8] Veerapandi R, Karthikeyan G, Jinu DG, Kannaiah R (2014) Experimental study and analysis of flow induced vibration in a pipeline. Int J Eng Res Tech 3(5): 1996-1999.‏
]9[ مشاک م ع، کرامت ع (1399) اندرکنش سیال-سازه ناشی از ضربه قوچ در خط لوله تحت فشار با در نظر گرفتن رفتار غیرخطی هندسی دیواره لوله. نشریه مهندسی عمران امیرکبیر 20-1 :(7)52.
]10[ تشکری بافقی م، الهامی ر، ربیعی ع (1394) تحلیل عددی پدیده تعامل سیال– سازه بر روی پره توربین. دو فصلنامه علمی پژوهشی مکانیک سیالات و آیرودینامیک 11-1 :(2)4.
]11[ کریمیان علی آبادی ح، احمدی ا، کرامت ع (1397) مطالعه جریان گذرا در لوله ویسکوالاستیک با      احتساب اثرات اندرکنشی بر مبنای پاسخ تحلیلی در حوزه فرکانس. نشریه مهندسی مکانیک امیرکبیر     160-151 :(4)52.
[12] Keim D, Andrienko G, Fekete JD, Görg C, Kohlhammer J, Melançon G (2008) Visual analytics: Definition, process, and challenges. Inf Visualization 4950:154-175.
[13] An C, Su J (2015) Dynamic behavior of pipes conveying gas–liquid two-phase flow. Nucl Eng Des 292: 204-212.‏
[14] Zhai HB, Wu ZY, Liu YS, Yue ZF (2013) In-plane dynamic response analysis of curved pipe conveying fluid subjected to random excitation. Nucl Eng Des 256: 214-226.‏
[15] Rezaee M, Arab Maleki V (2017) Vibration Characteristics of fluid-conveying pipes in presence of a dynamic vibration absorber. Modares Mechanical Engineering 17(7): 31-38.‏ (In Persian)
 [16] De La Torre O, Escaler X, Goggins J (2017) Experimental study of the dynamic response of partially filled pipes focused on natural frequencies and mode shapes. In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers Digital Collection.‏
[17] Chao C, Xu X, Kwelle SO, Fan X (2018) Significance of gas-liquid interfaces for two-phase flows in micro-channels. Chem Eng Sci 192: 114-125.‏
[18] Heshmati M, Amini Y, Daneshmand F (2019) Vibration and instability analysis of closed-cell poroelastic pipes conveying fluid. Eur J Mech A Solids 73: 356-365.‏
[19] Keramat A, Tijsseling AS, Hou Q, Ahmadi A (2012) Fluid–structure interaction with pipe-wall viscoelasticity during water hammer. J Fluids Struct 28: 434-455.‏
[20] Ahmadi A, Keramat A (2010) Investigation of fluid–structure interaction with various types of junction coupling. J Fluids Struct 26(7-8): 1123-1141.‏
[21] Keramat A, Ahmadi A (2012) Axial wave propagation in viscoelastic bars using a new finite-element-based method. J Eng Math 77(1): 105-117.‏
[22] Zanganeh R, Ahmadi A, Keramat A (2015) Fluid–structure interaction with viscoelastic supports during waterhammer in a pipeline. J Fluids Struct 54: 215-234.‏
[23] V Ranade V (2002) 3 Turbulent flow processes. Proc Sys Eng 5:57-83.
[24] Fluent User Services Center:
www.fluentusers.com