[1] Wang J, Geng L, Ding L, Zhu H, Yurchenko D (2020) The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl Energy 267(1): 114902.
[2] مامندی ا، جعفری ی (1400) بررسی بازدهی برداشت انرژی ارتعاشی تیر پیزوالکتریک با استفاده از روش اجزای محدود. مجله مهندسی مکانیک دانشگاه تبریز 218-208 :(1)51.
[3] Dell’Anna F, Dong T, Li P, Wen Y, Yang Z, Casu MR, Azadmehr M, Berg Y. (2018) State-of-the-art power management circuits for piezoelectric energy harvesters. IEEE Circuits Syst Mag 18(3): 27-48.
[4] Salazar R, Serrano M, Abdelkefi A (2020) Fatigue in piezoelectric ceramic vibrational energy harvesting: A review. Appl Energy 270(4): 115161.
[5] Gholikhani M, Roshani H, Dessouky S, Papagiannakis AT. (2020) A critical review of roadway energy harvesting technologies. Appl Energy 261(7): 114388.
[6] Rafiqu S (2018) Piezoelectric vibration energy harvesting. Modeling & Experiments. Springer.
[7] سلمانی ح، رحیمی غ (1397) بررسی اثر تغییرات نمایی سطح مقطع بر ولتاژ خروجی برداشت کننده انرژی پیزوالکتریک با غیرخطینگی هندسی، اینرسی، ماده و میرایی مجله مهندسی مکانیک مدرس 442-434 :(2)18.
[8] معینفرد ح، خادم باشی م (1396) مدلسازی برداشت انرژی الکتریکی با استفاده از مواد پیزوالکتریک تحت تحریک اتفاقی از پایه. نشریه علمی مکانیک سازهها و شارهها 10-1 :(1)6.
[9] Hosseini R, Hamedi M (2015) Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. J Micromech Microeng 25(12): 125008.
[10] Selvan K, Mohamed Ali M (2016) Micro-scale energy harvesting devices: Review of methodological performances in the last decade. Renew Sustain Energy Rev 54(2016): 1035-1047.
[11] Deng Q, Kammoun M, Erturk A, Sharma P. (2014) Nanoscale flexoelectric energy harvesting. Int J Solids Struct 51(18):3218-3225.
[12] Petrini F, Giaralis A, Wang Z (2019) Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants comfort serviceability performance and energy harvesting. Eng. Struct. 204(11): 109904.
[13] Tran N, Ghayesh M, Arjomandi M (2018) Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement. Int J Eng Sci 127(5): 162-185.
[14] حسینی مقدم س، لطافتی مح، حسینی ر (1396) برداشت انرژی ارتعاشی با استفاده از تیر یک سردرگیر با دو لایه پیزوالکتریک. نشریه علمی مکانیک سازهها و شارهها 9-1 :(1)7.
[15] Joo HK, Sapsis TP (2014) Performance measures for single-degree-of-freedom energy harvesters under stochastic excitation. J Sound Vib 333(19): 4695-4710.
[16] Haji Hosseinloo A, Turitsyn K. (2017) Effective kinetic energy harvesting via structural instabilities. Act Passiv Smart Struct Integr Syst 10164(617): 101641G.
[17] Yildirim T, Ghayesh M, Li W, Alici G. (2017) A review on performance enhancement techniques for ambient vibration energy harvesters. Renew. Sustain. Energy Rev 71(4): 435-449.
[18] Daqaq M, Masana R, Erturk A, Dane Quinn D (2014) On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion. App Mech Rev 66(4): 040801.
[19] McInnes C, Gorman D, Cartmell M (2008) Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J Sound Vib 318(4-5): 655-662.
[20] Cottone F, Vocca H, Gammaitoni L. (2009) Nonlinear Energy Harvesting. Am. Phys. Soc. 102(8):080601.
[21] Harne R, Wang K. (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22(2): 023001.
[22] Daqaq M, Crespo R, Ha S. (2020) On the efficacy of charging a battery using a chaotic energy harvester. Nonlinear Dyn 99(2): 1525-1537.
[23] Kumar A, Ali S, Arockiarajan A. (2016) Enhanced energy harvesting from nonlinear oscillators via chaos control. IFAC-PapersOnline 49(1): 35-40.
[24] Ott E, Grebogi C, Yorke J (1990) Controlling chaos. Phys Rev Lett 64(11): 1196-1199.
[25] Huynh B, Tjahjowidodo T, Zhong ZW, Wang Y, Srikanth N (2018) Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions. Mech Syst Signal Process 98(1): 1097-1115.
[26] Schuster H, Parlitz U, Kocarev L (2008) Handbook of Chaos Control. Wiley-VCH Verlag GmbH & Co .KGaA.
[27] Masana R, Daqaq M (2011) Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J Sound Vib 21(10): 6036-6052.
[28] Xu C, Liang Z, Ren B, Di W, Luo H, Wang D, Wang K, Chen Z (2013) Bi-stable energy harvesting based on a simply supported piezoelectric buckled beam. J Appl Phys 114(11): 4507.
[29] Erturk A, Hoffmann J, Inman D. (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys 94(25): 4102.
[30] Panyam M, Masana R, Daqaq MF. (2014) On approximating the effective bandwidth of bi-stable energy harvesters. Int J Non Linear Mech 67(12): 153-163.
[31] Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys. Lett. Sect. A Gen At Solid State Phys 170(6): 421-428.
[32] Fradkov A, Evans R. (2005) Control of chaos: Methods and applications in engineering. Annu Rev Control 29(1): 33-56.
[33] Pyragas K. (2006) Delayed feedback control of chaos. Philos. Trans R Soc A Math Phys Eng 364(1846): 2309-2334.
[34] Kittel A, Parisi J, Pyragas K (1995) Delayed feedback control of chaos by self-adapted delay time. Phys Lett 198(5-6): 433-436.
[35] Gani A, Salami M, Khan M (2003) Active vibration control of a beam with piezoelectric patches: Real-time implementation with xPC target. IEEE Conference on Control Applications - Proceedings 1(10): 538-544.
[36] Rahman N, Alam M (2012) Active vibration control of a piezoelectric beam using PID controller: Experimental study. Latin American J Solid Structures 9(4): 657-673.
[37] Yousefpour A, Haji Hosseinloo A, Hairi Yazdi M, Bahrami A (2020) Disturbance observer–based terminal sliding mode control for effective performance of a nonlinear vibration energy harvester. J Intell Mater Syst Struct 31(12): 1495-1510.
[38] Park J, Kwon O (2005) A novel criterion for delayed feedback control of time-delay chaotic systems. Chaos, Solitons & Fractals 23(2): 495-501.