[1] Marco M, Rodríguez-Millán M, Santiuste C, Giner E, Miguélez MH (2015) A review on recent advances in numerical modelling of bone cutting. J Mech Behav Biomed Mater 44: 179-201.
[2] Fadda M, Marcacci M, Toksvig-Larsen S, Wang T, Meneghello R (1998) Improving accuracy of bone resections using robotics tool holder and a high speed milling cutting tool. J Med Eng Technol 22(6): 280-284.
[3] Denis K, Van Ham G, Vander Sloten J, Van Audekercke R, Van der Perre G, De Schutter J, Kruth JP, Bellemans J, Fabry G (2001) Influence of bone milling parameters on the temperature rise, milling forces and surface flatness in view of robot-assisted total knee arthroplasty. Intl Congress Series 1230: 300-306.
[4] Van Ham G, Denis K, Vander Sloten J, Van Audekercke R, Van der Perre G, De Schutter J, Aertbelien E, Demey S, Bellemans J (1998) Machining and accuracy studies for a tibial knee implant using a force-controlled robot. Comput Aided Surg 3(3): 123-133
[5] Singh G, Jain V, Gupta D, Ghai A (2016) Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method. J Mech Behav Biomed Mater 62: 355-365.
[6] Tahmasbi V, Ghoreishi M, Zolfaghari M, (2015) Modeling and multi objective optimization of effective parameters in drilling cortical bone. Mod Mech Eng 14(13): 113-119.
[7] Alam K, A Mitrofanov V, Silberschmidt VV, (2009) Measurements of Surface Roughness in Conventional and Ultrasonically Assisted Bone Drilling. Am J biomed Sci 1: 9.
[8] Singh G, Jain V, Gupta D (2015) Comparative study for surface topography of bone drilling using conventional drilling and loose abrasive machining. Proc Inst Mech Eng H 229(3): 225-231.
[9] Yeager C, Nazari A, Arola D (2008) Machining of cortical bone: Surface texture, surface integrity and cutting forces. Mach Sci Technol 12(1): 100-118.
[10] Toksvig-Larsen S, Ryd L (1991) Surface flatness after bone cutting. A cadaver study of tibial condyles. Acta Orthop Scand 62(1): 15-18.
[11] Aspenberg P, Goodman S, Toksvig-Larsen S, Ryd L, Albrektsson T (1992) Intermittent micromotion inhibits bone ingrowth. Titanium implants in rabbits. Acta Orthop Scand 63(2): 141-5.
[12] Friedman RJ (1992) Advances in biomaterials and factors affecting implant fixation. Instr Course Lect 41: 127-136.
[13] Wu LD, Hahne HJ, Hassenpflug J (2004) The dimensional accuracy of preparation of femoral cavity in cementless total hip arthroplasty. J Zhejiang Univ Sci 5(10): 1270-1278.
[14] Dahotre N, Joshi S (2016) Machining of bone and hard tissues. Springer International Publishing.
[15] Plaskos C (1999) Bone sawing and milling in computer-assisted total knee arthroplasty. Theses, univ of western ontario.
[16] Pandey RK, Panda SS (2013) Predicting temperature in orthopaedic drilling using back propagation neural network. Procedia Eng 51: 676-682.
[17] Lee J, Ozdoganlar OB, Rabin Y (2012) An experimental investigation on thermal exposure during bone drilling. Med Eng Phys 34(10): 1510-1520.
[18] Kuppuswamy R, Christie-Taylor B (2019) Influence of surgical drill geometry on drilling performance of cortical and trabecular bone. in Proc of Springer Singapore 119-131.
[19] Charnley J (1960) Anchorage of the femoral head prosthesis to the shaft of the femur. J Bone Joint Surg Br 42-b: 28-30.
[20] Kalidindi V (2004) Optimization of drill design and coolant systems during dental implant surgery. Thesis, Univ of Kentucky.
[21] Whitehouse D (2004) Surfaces and their Measurement. 1st edn. Butterworth-Heinemann.
[22] Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM (2004) Response surface methodology: A retrospective and literature survey. J Qual Technol 36(1): 53-77.
[23] Montgomery DC (2008) Design and analysis of experiments. John Wiley & Sons.
[24] Sobol′IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1): 271-280.
[25] Kalidindi V (2004) Optimization of drill design and coolant systems during dental implant surgery. MS Thesis, Kentucky.
[26] Saha S, Pal S (1984) Mechanical properties of bone cement: a review. J Biomed Mater Res 18(4): 435-462.
[27] Joseph Davidson M, Balasubramanian K, Tagore GRN (2008) Surface roughness prediction of flow-formed AA6061 alloy by design of experiments. J Mater Process Technol 202(1): 41-46.
[28] Carlsson L, Rostlund T, Albrektsson B, Albrektsson T (1988) Implant fixation improved by close fit. Cylindrical implant-bone interface studied in rabbits. Acta Orthop Scand 59(3): 272-275.
[29] Daugaard H, Elmengaard B, Bechtold JE, Jensen T, Soballe K (2010) The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J Biomed Mater Res 92(3): 913-921.
[30] Altintas Y, Ber A (2001) Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design. APPL MECH REV 54(5).
[31] Saffar RJ, Razfar MR, Salimi AH, Khani MM (2009) Optimization of machining parameters to minimize tool deflection in the end milling operation using genetic algorithm. World Appl Sci 6(1): 64-69.
[32] Wang W, Kweon SH, Yang SH, (2005) A study on roughness of the micro-end-milled surface produced by a miniatured machine tool. J Mater Process Technol 162-163: 702-708.
[33] Christie NR (2007) Fundamentals of machining and machine tools. 2nd edn. Int J Prod Res 28(1): 215-215.
[34] Thepsonthi T, Özel T (2015) 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: Experimental validations on chip flow and tool wear. J Mater Process Technol 221: 128-145.