کنترل مود لغزشی تطبیقی ربات متحرک

نوع مقاله : مقاله مستقل

نویسندگان

دانشگاه صنعتی شاهرود

چکیده

با توجه به دینامیک غیرخطی رباتهای متحرک چرخدار و حضور عدم قطعیت از کنترل مود لغزشی استفاده می شود. با این وجود، کنترل مود لغزشی با مشکل انتخاب حدود عدم قطعیت و وجود لرزش سیگنال کنترل مواجه است که عملکرد سیستم کنترل را تضعیف می نمایند. برای بهبود عملکرد، این مقاله کنترل نوین مود لغزشی تطبیقی را ارائه می نماید. نوآوری مقاله در ارائه مدل جدیدی از ربات در فضای حالت و بکارگیری رویکرد کنترل ولتاژ است. موتورها نیز در سیستم رباتیک منظور شده اند. در طرح های قبلی که مبتنی بر رویکرد کنترل گشتاور هستند دینامیک موتورها لحاظ نشده اند. در طرح پیشنهادی، حدود عدم قطعیت به صورت تطبیقی تعیین می گردد و لرزش سیگنال کنترل بهبود می یابد. روش پیشنهادی مبتنی بر تئوری پایداری لیاپانوف بوده و پایداری سیستم کنترل را تضمین می نماید. بعلاوه، از الگوریتم بهینه سازی گروه ذرات، به منظور یافتن پارامترهای بهینه سیستم کنترل استفاده می شود. کنترل کننده نسبت به اغتشاش خارجی و دینامیک های مدل نشده نیز مقاوم است. نتایج شبیه سازی برتری روش پیشنهادی را نسبت به روش کنترل مود لغزشی مرسوم نشان می دهد.

کلیدواژه‌ها

موضوعات


[1] Nourbakhsh IR, Siegwart R (2004) Introduction to autonomous mobile robots. MIT press, MA, USA.
[2] Jiang ZP, Nijmeijer H (1997) Tracking control of mobile robots: a case study in backstepping. Automatica 33(7): 1393–1399.
[3] Kanayama Y (1990) A stable tracking control method for an autonomous mobile robot. Proc IEEE Conf on Robotics Automation, 13-18 May, Cincinnati, OH, 1: 384–389.
[4] Chung Y, Park C, Harashima F (2001) A position control differential drive wheeled mobile robot. IEEE Trans Ind Control 48(4): 853–863.
[5] Chen H, Ma MM, Wang H, Liu ZY, Cai ZX (2009) Moving horizon H tracking control of wheeled mobile robots with actuator saturation. IEEE Trans Control Syst Technol 17(2): 449–457.
[6] Yang JM, Kim JH (1999) Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans Robot 15(3): 578–587.
[7] Fukao T, Nakagawa H, Adachi N (2000) Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans Neural Network 16(5): 609–615.
[8] Chen C, Li TS, Yeh Y, Chang CC (2009) Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. mechatronics 19: 156–166.
[9] Shojaei K, Mohammad-Shahri A, Tarakameh A (2011) Adaptive feedback linearizing control of nonholonomic wheeled mobile robots in presence of parametric and nonparametric uncertainties. Robotics and Computer-Integrated Manufacturing 27(1): 194–204.
[10] Biglarbegian M (2012), A Novel Robust Leader-Following Control Design for Mobile Robots, J Intell Robot Syst DOI 10.1007/s10846-012-9795.
[11] Fierro R, Lewis FL (1998) Control of a nonholonomic mobile robot using neural networks. IEEE Trans Neural Networks 9(4): 589–600.
[12] Mohareri O, Dhaouadi R, Rad AB (2012) Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks. Neurocomputing 88: 54–66.
[13] Hou Z, Zou A, Cheng L, Tan M (2009) Adaptive Control of an electrically driven Nonholonomic mobile robot via backstepping and fuzzy approach. IEEE Trans Control System Technology 17(4): 803–815.
[14] Su KH, Chen YY, Su SF (2010) Design of neural-fuzzy-based controller for two autonomously driven wheeled robot. Neurocomputing 73(13-15): 2478–2488.
[15] Martıacute R, nezSoto O Castillo, Aguilar LT (2009) Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. J Int Sci 179(13): 2158–2174.
[16] Sharma KD, Chatterjee A,  Rakshit A (2012) A PSO–Lyapunov hybrid stable adaptive fuzzy tracking control approach for vision-based robot navigation. IEEE Trans on Instrumentation and measurement 61(7): 1908–1914.
[17] Hwang C, Chang N (2008) Fuzzy decentralized sliding-mode control of a car-like mobile robot in distributed sensor-network spaces. IEEE Trans on fuzzy system 16(1): 97–109.
[18] Fateh MM (2010) Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model. Nonlinear Dyn 61(4): 655–666.
[19] Fateh MM (2008) On the voltage-based control of robot manipulators. Int J Cont Autom Syst 6(5): 702–712.
[20] Slotine JJE, Li W (1991) Applied nonlinear control. Prentice Hall, Inc.
[21] Kennedy J, Eberhart RC, Shi Y (2001) Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco.
[22] Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proc IEEE Int Conf on Neural Networks, Piscataway, NJ, 4: 1942–1948.