اثر تغییر موقعیت دیواره گرم و افزایش دامنه و تعداد نوسان دیواره موج دار بر انتقال حرارت جابجایی اجباری نانوسیال درون کانال در حضور میدان مغناطیسی

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه یزد، ایران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه یزد، ایران

3 استادیار، دانشکده مهندسی مکانیک، دانشگاه کاشان، ایران

چکیده

چکیده
در مقاله حاضر، اثر تغییر موقعیت منبع حرارتی بر انتقال حرارت نانوسیال تحت تأثیر میدان مغناطیسی درون کانال موج‌دار با دامنه و تعداد نوسان متغیر، به روش شبکه بولتزمن بررسی شده است. میدان مغناطیسی یکنواخت، عمود بر کانال اعمال شده است. نیمه ابتدایی دیواره بالایی کانال، موجی شکل با دامنه و تعداد نوسان متغیر در دمای ثابت سرد و نیمی از دیواره پایینی کانال با موقعیت متغیر، در دمای ثابت گرم قرار دارد. سایر دیواره‌ها نسبت به جرم و حرارت عایق شده‌اند. در این بررسی تاثیر پارامترهایی چون عدد رینولدز، کسر حجمی نانوذرات، عدد هارتمن، موقعیت قرارگیری دیواره گرم و دامنه و تعداد نوسان دیواره موج‌دار، مورد ارزیابی قرار گرفته است. نتایج نشان می‌دهند که در یک موقعیت مشخص قرارگیری دیواره گرم، با افزایش سایر پارامترها ، عدد ناسلت متوسط افزایش می‌یابد. همچنین بیشترین میزان انتقال حرارت مربوط به حالتی است که دیواره گرم به ورودی کانال نزدیک‌تر است که به طور متوسط منجر به افزایش ۲۰ درصدی عدد ناسلت متوسط می‌شود. بعلاوه تأثیر افزایش عدد هارتمن بر میزان انتقال حرارت، در حالتی که دیواره گرم به خروجی کانال نزدیک‌تر باشد، بیشتر است. افزایش درصد نانوذره، انتقال حرارت را افزایش می‌دهد و این تأثیر با کاهش عدد رینولدز، افزایش می‌یابد.

کلیدواژه‌ها


[1] Pietropaoli M, Montomoli F, Gaymann A (2019) Three-dimensional fluid topology optimization for heat transfer. Struct Multidiscipl Optim 59: 801-812.
[2] Menni Y, Azzi A, Chamkha AJ, Harmand S (2019) Analysis of fluid dynamics and heat transfer in a rectangular duct with staggered baffles. J Appl Comput Mech 5: 231-248.
[3] He W, Toghraie D, Lotfipour A, Pourfattah F, Karimipour A, Afrand M (2020) Effect of twisted-tape inserts and nanofluid on flow field and heat transfer characteristics in a tube. Int J Heat Mass Transf 110: 211-219.
[۴] محمدی م، مظلومی س ح، حسنی س م، خوشوقت علی­آبادی م (۲۰۱8) بهبود عملکرد هیدرولیکی-حرارتی چاه های حرارتی میکروکانال با استفاده از پین-فین های V شکل و نانوسیال Al2O3/آب. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها 228-211: (4)8.
[5] Bouzerzour A, Djezzar M, Oztop HF, Tayebi T, Abu-Hamdeh N (2020) Natural convection in nanofluid filled and partially heated annulus: Effect of different arrangements of heaters. Physica A 538: 122-138.
[6] Choi SUS (1995) Mixed convection magnetohydrodynamics flow of a nanofluid with heat transfer: A numerical study. ASME Int 66: 99-105.
[7] Wang CS, Wei TC, Shen PY, Liou TM (2020) Lattice Boltzmann study of flow pulsation on heat transfer augmentation in a louvered microchannel heat sink. Int J Heat Mass Tran 148: 119-139.
 [8] شهریاری ع، جهان­تیغ ن (۲۰۱8) مطالعه عددی تاثیر زبری­های یکنواخت سینوسی بر انتقال حرارت جابجایی طبیعی نانوسیال در محفظه مربعی به روش شبکه بولتزمن. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها 286-273: (4)8.
[9] کاوه ر، سفید م، مظفری شمسی م (۲۰۱9) بررسی عددی اختلاط دو سیال با لزجت متفاوت در یک میکروکانال در نسبت­های منظری مختلف پره به روش شبکه بولتزمن. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها 202-187: (1)9.
[10] رحمتی ا ر، نعمتی م (۲۰۱8) بررسی تأثیر میدان مغناطیسی بر انتقال حرارت جابجایی ترکیبی نانوسیال درون محفظه K شکل با استفاده از روش شبکه بولتزمن. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها 126-111: (1)۸.
[11] Lawal KK, Jibril HM (2019) Unsteady MHD natural convection flow of heat generating/absorbing fluid near a vertical plate with ramped temperature and motion. J Taibah Univ Sci 37: 1528-1534.
[12] El Desouky A, Ismail HNA, Abourabia AM, Ahmed NA (2020) Numerical simulation of MHD flow and heat transfer inside T-shaped cavity by the parallel walls motion. SN Appl Sci 2: 1-18.
[13] Nouri R, Gorji-Bandpy M, Domiri Ganji D (2014) Numerical investigation of magnetic field effect on forced convection heat transfer of nanofluid in a sinusoidal channel. Modares Mech Eng 13: 43-55.
[14] Mousavi SV, Gerdroodbary MB, Sheikholeslami M, Ganji D (2016) The influence of a magnetic field on the heat transfer of a magnetic nanofluid in a sinusoidal channel. Euro Physic J Plus 131: 347-359.
[15] Dehghani MS, Toghraie D, Mehmandoust B (2019) Effect of MHD on the flow and heat transfer characteristics of nanofluid in a grooved channel with internal heat generation. Int J Numerical Methods Heat  Fluid Flow 29: 1403-1431.
[16] تقی­پور ع ، کریمی­پور آ (۲۰۱5) شبیه­سازی انتقال حرارت جابجایی نانوسیال متشکله از آب و نانو لوله کربنی FMWNT در یک ریز کانال تحت میدان مغناطیسی در رژیم          جریان لغزشی. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها 222-209: (3)5.
[17] امیددزیانی س، خزایی ا، قره­خانی س، اشجعی م، زندیان و (۲۰۱۹) بررسی تجربی انتقال حرارت جابجایی اجباری نانوسیال فریک گرافنی در یک لوله دایروی تحت میدان مغناطیسی. نشریه علمی پژوهشی مهندسی مکانیک مدرس 1941-1929: (8)19.
 [18] اشرفی­زاده ع، جودکی ع (۲۰۱4) تحلیل جابجایی حرارت در کانال‌های موج­دار با نگاهی نو به مدلسازی هندسی آن‌ها. نشریه علمی پژوهشی مکانیک امیرکبیر 156-147: 14.
[19] Musatfa AW, Khalif HJ, Ali HH (2011) Effect of sinusoidal wavy wall on heat transfer from discrete heat sources placed in two dimensional channel. Al Qadisiya J Eng Sci 4: 408-418.
[20] Joodaki A (2018) Numerical analysis of fully developed flow and heat transfer in channels with periodically grooved parts. Int J Eng Tran 31: 1129-1138.
[21] Manca O, Nardini S, Khanafer K, Vafai K (2003) Effect of heated wall position on mixed convection in a channel with an open cavity. Numerical Heat Transfer 43: 259-282.
[22]  Ahmed MA, Shuai NH, Yusoff MZ (2012) Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid. Int J Heat Mass Tran 55: 5891-5898.
[23] Aminossadati S, Raisi A, Ghasemi B (2011) Effects of magnetic field on nanofluid forced convection in a partially heated microchannel. Int J Non Linear Mech 46: 1373-1382.
[24] Servati AA, Javaherdeh K, Ashorynejad HR (2014) Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method. Adv Powder Tec 25: 666-675.
[25] Ashorynejad HR, Zarghami A (2018) Magnetohydrodynamics flow and heat transfer of Cu-water nanofluid through a partially porous wavy channel. Int J Heat Mass Tran 119: 247-258.
[26] Yang YT, Wang YH, Tseng PK (2013) A micro convection model for thermal conductivity of nanofluids. Int Commun Heat Mass 55: 5891-5898.
[27] Heidary H, Kermani M (2010) Effect of nano-particles on forced convection in sinusoidal-wall channel. Int Communications Heat Mass Tran 37: 1520-1527.
[28] Mohebbi R, Rashidi M, Izadi M, Sidik NAC, Xian HW (2018) Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. Int J Heat Mass Tran 117: 1291-1303.
[29] Goharkhah M, Esmaeili M, Ashjaee M (2018) Numerical simulation and optimization of forced convection heat transfer of magnetic nanofluid in a channel in the presence of a non-uniform magnetic field. J Space Sci Tec 11: 11-19.
[30] Dormohammadi R, Farzaneh-Gord M, Ebrahimi-Moghadam A, Ahmadi MH (2018) Heat transfer and entropy generation of the nanofluid flow inside sinusoidal wavy channels. J Molecular Liquids  269: 229-240.
[31] Rowghani S, Mirzaei M, Kamali R (2010) Numerical simulation of fluid flow past a square. Cylinder using a lattice boltzmann method. J Agricultural Sci Tec 7: 9-17.
[32] Parvin S, Hossain N (2012) Finite element simulation of MHD combined convection through a triangular wavy channel. Int Communications Heat Mass Tran 39: 811-817.
[33] Vijaybabu T, Anirudh K, Dhinakaran S (2018) Lattice Boltzmann simulations of flow and heat transfer from a permeable triangular cylinder under the influence of aiding buoyancy. Int J Heat Mass Tran 117: 799-817.
[34] Pirouz MM, Farhadi M, Sedighi K, Nemati H, Fattahi E (2011) Lattice Boltzmann simulation of conjugate heat transfer in a rectangular channel with wall-mounted obstacles. Scientia Iranica 18: 213-221.
[35] Dulikravich G, Gokaltun S (2010) Lattice Boltzmann computations of incompressible laminar flow and heat transfer in a constricted channel.    Comput Math Appl 59: 2431-2441.
[36] Mohebbi R, Lakzayi H, Sidik NAC, Japar WMAA (2018) Lattice Boltzmann computations of incompressible laminar flow and heat transfer in a constricted channel. Int J Heat Mass Tran 117: 425-435.
[37] Heidary H, Kermani MJ, Dabir B (2017) Magnetic field effect on cinvective heat transfer in corrugated flow channel. Therm Sci 21: 2105-2115.
[38] Mohamad AA (2011) Lattice Boltzmann method: fundamentals and engineering applications with computer codes. Springer Science & Business Media.
[39] ربانی ر، طالبی ش (۲۰۱۳) رفتار غیر دائم انتقال         حرارت جابجایی طبیعی در یک محفظه در حال چرخش     ۹۰ درجه­ای. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها 339-329: (۲)۵.
[40] Nasseri L, Ameziani DE, Rahli O, Bennacer R (2019) Numerical study of mixed convection in a ventilated square enclosure with the lattice Boltzmann method. Num Heat Tran Part A App 75: 674-689.
[41] Brinkman H (1952) The viscosity of concentrated suspensions and solutions. J Chemical Physics 20: 571-571.
[42] Patel HE, Sundarajan T, Pradeep T, Dasgupta A DasguptaN, Das SK (2005) A micro convection model for thermal conductivity of nanofluids. Prama J Phys 65: 863-869.
 [43] Santra AK, Chakraborty N (2009) Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates. Int J Therm Sci 48: 391-400.
[44] Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 9: 1591-1598.
[45] Mei R, Luo LS, Shyy W (1999) An accurate curved boundary treatmen in the lattice boltzmann method. J Comput Phys 155: 307-330.
[46] صادقی ص، قاسمی ب (۲۰۱3) انتقال حرارت جابجایی توام نانوسیال در یک کانال مورب تحت میدان مغناطیسی. نشریه علمی پژوهشی مهندسی مکانیک مدرس 31-18: 13.
[47] شهریاری ع ، عاشوری­نژاد ح ر (۲۰۱7) ‌مطالعه عددی انتقال حرارت و تولید آنتروپی جابجایی رایلی-بنارد نانوسیال در محفظه‌ موجی تحت تأثیر میدان مغناطیسی. نشریه علمی پژوهشی مهندسی مکانیک مدرس 396-385: 17.
[48] Sathiyamoorthy M, Chamkha A (2010) Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s). Int J Therm Sci 49: 1856-1865.