[1] Pandey C, Saini N, Mahapatra MM, Kumar P (2016) Hydrogen induced cold cracking of creep resistant ferritic P91 steel for different diffusible Hydrogen levels in deposited metal. Int J Hydrogen Energy 41(39):17695-17712.
[2] Das CR, Albert SK, Swaminathan J, Bhaduri AK, Murty BS (2013) Effect of boron on creep behaviour of inter-critically annealed modified 9Cr-1Mo steel. Proc. Eng. 6th Int. Conf. Creep, Fatigue and Creep Fatigue Interaction 55: 402-407.
[3] Das CR, Albert SK, Swaminathan J, Bhaduri AK, Murty BS (2012) Improvement in creep resistance in modified 9Cr1Mo steel weldment by boron addition. Weld World 56(7-8):10-17.
[4] Thomas Paul V, Saroja S, Vijayalakshmi M (2008) Microstructural stability of modified 9Cr-1Mo steel during long term exposures at elevated temperatures. J Nucl Mater 378(1):273-281.
[5] Serna JA, Afanador W (2001) Estimation of improved productivity based on Materials substitution in high temperature applications. ASTM A-335, 2(2):125-135.
[6] Wheeldon J, Parkes J, Dillon D (2008) A proposed initiative by EPRI to advance deployment of ultra-supercritical pulverized coal power plant technology with near-zero emissions and CO2 capture and storage. 5th Int. Conf. Adv. Mater. Tech. Fossil Power Plants, Marco Island, FL, USA, EPRI, 82-91.
[7] Pandey C, Mahapatra MM, Kumar P, Saini N Srivastava A (2017) Microstructure and mechanical property relationship for different heat treatment and hydrogen level in multi-pass welded P91 steel joint. J Manuf Processes 28(1): 220-234.
[9] Coleman KK, Newell WF Jr (2007) P91 and beyond welding the new-generation Cr-Mo alloys for high-temperature service. Weld J Aug: 29-33.
[10] Albert SK, Ramasubbu V, Sundar Raj SI, Bhaduri AA (2011) Hydrogen-assisted cracking susceptibility of modified 9Cr-1Mo steel and its weld metal. Weld World 55(7-8): 66-74.
[11] Magudeeswaran G, Balasubramanian V, Madhusudhan Reddy G (2008) Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments. Int J Hydrogen Energy 33(7): 1897-1908.
[12] Yue X (2015) Investigation on heat-affected zone hydrogeninduced cracking of high-strength naval steels using the Granjon implant test. Weld World 59(1): 77-89.
[13] Arivazhagan B, Vasudevan M (2014) A comparative study on the effect of GTAW processes on the microstructure and mechanical properties of P91 steel weld joints. J Manuf Processes 16(2): 305-311.
[14] Vora J, Badheka V (2017) Experimental investigation on microstructure and mechanical properties of activated TIG welded reduced activation ferritic/martensiticsteel joints. J Manuf Processes 25: 85-93.
[15] Goyal S, Laha K, Chandravathi KS, Parameswaran P, Mathew MD (2011) Finite element analysis of type IV cracking in 2. 25Cr–1Mo steel weldment based on micro-mechanistic approach. Philos Mag 91(23): 3128-3154.
[16] Parker J (2013) Factors affecting Type IV creep damage in Grade 91 steel welds. Mater Sci Eng A 578: 430-437.
[17] Wang Y, Kannan R, Li L (2016) Characterization of as-welded microstructure of heataffected zone in modified 9Cr–1Mo–V–Nb steel weldment. Mater Charact 118: 225–234.
[18] مرادی م، خرم ع، عبدالهی هـ (1396) بررسی خواص متالورژیکی و مکانیکی در قطعات جوشکاری شده به روش تیگ جهت جایگزینی مواد. مجله مکانیک سازهها و شارهها 95-87 :(4)7.