[1] غفاری ع، نظری م، خزائی م و بهمئی ب (1393) ﺗﻐﻴﻴﺮ در دﻳﻨﺎﻣﻴﻚ ﻳﻚ ﺳﻴﺴﺘﻢ ﺑﺎ اﺳﺘﻔﺎده از ورودیﻫﺎی زﻣﺎن ﻣﺤﺪود: ﻛﺎرﺑﺮد در درﻣﺎن و ﻣﺪﻟﺴﺎزی ﺳﺮﻃﺎن. مجله علمی پژوهشی مکانیک سازهها و شارهها 91-79 :(1)4.
[2] دستورانی هـ، جهاننما م، اسلامی مجد ع (1395) مطالعه عددی فرآیند امولوسیونسازی در دستگاه میکروسیال متقاطع. مجله علمی پژوهشی مکانیک سازهها و شارهها 284-273 :(1)6.
[3] نیازی س، مجیدی س، مجدم م (1397) شبیهسازی عددی تولید قطره در میکروکانال با هندسه متمرکز کننده. بیست و ششمین همایش سالانه بینالمللی انجمن مهندسان مکانیک ایران.
[4] Hyun KA, Jung HI (2014) Advances and critical concerns with the microfluidic enrichments of circulating tumor cells. Lab Chip 14(1): 45-56.
[5] Yan S, Zhang J, Yuan D, Li W (2017) Hybrid microfluidics combined with active and passive approaches for continuous cell separation. Electrophoresis 38(2): 238-249.
[6] Vig AL (2010) Pinched flow fractionation–technology and application (Doctoral Dissertation, Ph. D. Thesis, Department of Micro-and Nanotechnology Technical University of Denmark).
[7] Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76(18): 5465-5471.
[8] Takagi J, Yamada M, Yasuda M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5(7): 778-784.
[9] Vig AL, Kristensen A (2008) Separation enhancement in pinched flow fractionation. Appl Phys Lett 93(20): 203507.
[10] Nho HW, Yoon TH (2013) Enhanced separation of colloidal particles in an AsPFF device with a tilted sidewall and vertical focusing channels (t-AsPFF-v). Lab Chip 13(5): 773-776.
[11] Çetin B, Li D (2011) Dielectrophoresis in microfluidics technology. Electrophoresis 32(18): 2410-2427.
[12] Lam YC, Ling SH, Chan WY, Chian KS (2015) Dielectrophoretic cell motion model over periodic microelectrodes with unit-cell approach. Microfluidics Nanofluidics 18(5-6): 873-885.
[13] Bisceglia E, Cubizolles M, Trainito CI, Berthier J, Pudda C, Français O, Le Pioufle B (2015) A generic and label free method based on dielectrophoresis for the continuous separation of microorganism from whole blood samples. Sens Actuators B Chem 212: 335-343.
[14] Ali H, Park CW (2016) Numerical study on the complete blood cell sorting using particle tracing and dielectrophoresis in a microfluidic device. Korea-Aust Rheol J 28(4): 327-339
[15] Hadady H, Redelman D, Hiibel SR, Geiger EJ (2016) Continuous-flow sorting of microalgae cells based on lipid content by high frequency dielectrophoresis. AIMS Biophys 3(3): 398-414.
[16] Shafiee H, Caldwell JL, Sano MB, Davalos RV (2009) Contactless dielectrophoresis: a new technique for cell manipulation. Biomed Microdevices 11(5): 997.
[17] Hyun KA, Jung HI (2013) Microfluidic devices for the isolation of circulating rare cells: A focus on affinity based, dielectrophoresis, and hydrophoresis. Electrophoresis 34(7): 1028-1041.
[18] Pethig R (2010) Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 4(2): 022811.
[19] Hughes MP (2002) Strategies for dielectrophoretic separation in laboratory on a chip systems. Electrophoresis 23(16): 2569-2582.
[20] Alazzam A, Mathew B, Alhammadi F (2017) Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis. J Sep Sci 40(5): 1193-1200.
[21] Jubery TZ, Srivastava SK, Dutta P (2014) Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis 35(5): 691-713.
[22] Yang J, Huang Y, Wang XB, Becker FF, Gascoyne PR (1999) Cell separation on microfabricated electrodes using dielectrophoretic/ gravitational field-flow fractionation. Anal Chem 71(5): 911-918.
[23] Liqun W, Lin-Yue L, Kian-Meng L (2012) Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells. Biomicrofluidics 6(1): 014113.
[24] Yang J, Huang Y, Wang X, Wang XB, Becker FF, Gascoyne PR (1999) Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. Biophys J 76(6): 3307-3314.
[25] Piacentini N, Mernier G, Tornay R, Renaud P (2011) Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5(3): 034122.
[26] Kralj JG, Lis MT, Schmidt MA, Jensen KF (2006) Continuous dielectrophoretic size-based particle sorting. Anal Chem 78(14): 5019-5025.
[27] Pethig R, Markx GH (1997) Applications of dielectrophoresis in biotechnology. Trends Biotechnol 15(10): 426-432.
[28] Demierre N, Braschler T, Linderholm P, Seger U, Van Lintel H, Renaud P (2007) Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab Chip 7(3): 355-365.
[29] Mernier G, Piacentini N, Braschler T, Demierre N, Renaud P (2010) Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting. Lab Chip 10(16): 2077-2082.
[30] Markx GH, Pethig R, Rousselet J (1997) The dielectrophoretic levitation of latex beads, with reference to field-flow fractionation. J Phys D Appl Phys 30(17): 2470.
[31] Jubery TZ, Srivastava SK, Dutta P (2014) Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis 35(5): 691-713.
[32] Park S, Zhang Y, Wang TH, Yang S (2011) Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip 11(17): 2893-2900.
[33] Schwan HP (1957) Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 5: 147-209.