بررسی نقش میکروتوبول‌ها در پاسخ سلول عصبی به بار انفجاری با استفاده از برهمکنش سیال-جامد

نوع مقاله : مقاله مستقل

نویسندگان

1 کارشناسی ارشد هوافضا، دانشکده علوم و فنون نوین، دانشگاه تهران

2 دانشیار مهندسی پزشکی، دانشکده علوم و فنون نوین، دانشگاه تهران

چکیده

آسیب تروماتیک مغز، بیان آسیب مغزی درنتیجه ترومای ناگهانی است. درک مکانیسم و اثرات چنین خساراتی به مغز جهت درمان صدمات بسیار مهم است. در این تحقیق، یک چارچوب محاسباتی برای به دست آوردن پاسخ سلول عصبی ارائه شده است. سلول عصبی متشکل از سه قسمت هسته، سیتوپلاسم، غشا و همچنین شبکه میکروتوبول‎ها با جهت گیری متفاوت شامل مربعی، ستاره‌ای و جهت گیری تصادفی در نظر گرفته شده است. در مدل‌سازی موج انفجار از بارگذاری فشار ناشی از لیزر و از روش المان محدود با اندرکنش سیال و سازه استفاده شده است. قسمت‌های سلول از مدل‌های مواد ویسکو الاستیک و الاستیک پیروی می‌کنند. نتایج به‌دست‌آمده در مقایسه با مطالعات آزمایشگاهی انجام‌شده، نشان‌دهنده‌ی سطوح مختلفی از آسیب سلولی است. نتایج به دست آمده نشان می‌دهند که حضور شبکه میکروتوبول، فارغ از نوع آرایش شبکه، میزان جابجایی کلی سلول و تنش وون میزز در اجزای دیگر سلول را کاهش می‌دهند. همچنین شبکه میکروتوبول در برابر تنش‎های فشاری خارجی اعمالی به سلول، نقش مؤثری در مقاومت کلی سلول ایفا می‌کنند. تنش وون میزز در غشا، در حضور شبکه میکروتوبول‌ها کاهش 50 درصدی از 30 پاسکال به 15 پاسکال دارد.

کلیدواژه‌ها

موضوعات


[1]  Bernick KB (2011) Cell biomechanics of the central nervous system. Thesis, Massachusetts Institute of Technology.
[2]  Felgner H, Frank R, Biernat J, Mandelkow EM, Mandelkow E, Ludin B, Matus A, Schliwa M (1997) Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules. J Cell Biol 138(5): 1067-1075.
[3]  Jérusalem A, Dao M (2012) Continuum modeling of a neuronal cell under blast loading. Acta Biomater 8(9): 3360-3371.
[4]  Brown KA (2016) Blast loading of cells. in: Blast Injury Science and Engineering, Eds., Springer.
[5]  Edwards DS, Clasper J (2016) Blast injury mechanism. in: Blast Injury Science and Engineering, Eds., Springer.
[6]  Chen Y, Constantini S (2013) Caveats for using shock tube in blast-induced traumatic brain injury research. Front Neurol 4: 117.
[7]  Willinger R, Baumgartner D (2003) Numerical and physical modelling of the human head under impact-towards new injury criteria. Int J Vehicle Des 32(1-2): 94-115.
[8]  Salvador‐Silva M, Aoi S, Parker A, Yang P, Pecen P, Hernandez MR (2004) Responses and signaling pathways in human optic nerve head astrocytes exposed to hydrostatic pressure in vitro. Glia 45(4): 364-377.
[9]  Murphy EJ, Horrocks LA (1993) A model for compression trauma: pressure-induced injury in cell cultures. J Neurotraum 10(4): 431-444.
[10] Alford PW, Dabiri BE, Goss JA, Hemphill MA, Brigham MD, Parker KK (2011) Blast-induced phenotypic switching in cerebral vasospasm. P Natl A Sci India 108(31): 12705-12710.
[11] Bernick KB, Prevost TP, Suresh S, Socrate S (2011) Biomechanics of single cortical neurons. Acta Biomater 7(3): 1210-1219.
[12] Mofrad MR, Kamm RD (2006) Cytoskeletal mechanics: Models and measurements in cell mechanics. Cambridge University Press.
[13] Jean RP, Chen CS, Spector AA (2005) Finite-element analysis of the adhesion-cytoskeleton-nucleus mechanotransduction pathway during endothelial cell rounding: axisymmetric model. J Biomech Eng-T ASME 127(4): 594-600.
[14] Gladilin E, Micoulet A, Hosseini B, Rohr K,   Spatz J, Eils R (2007) 3D finite element analysis of uniaxial cell stretching: from image to insight. Phys Biol 4(2): 104.
[15] O'Connor CM, Adams JU, Fairman J (2010) Essentials of cell biology. Cambridge, MA: NPG Education, Vol. 1.
[16] Zander NE, Piehler T, Boggs ME, Banton R, Benjamin R (2015) In vitro studies of primary explosive blast loading on neurons. J Neurosci Res 93(9): 1353-1363.
[17] Sondén A, Svensson B, Roman N, Östmark H, Brismar B, Palmblad J, Kjellström BT (2000) Laser‐induced shock wave endothelial cell injury, Lasers in surgery and medicine. 26(4): 364-375.
[18] Drumheller DS (1998) Introduction to wave propagation in nonlinear fluids and solids. Cambridge University Press.
[19] Prado GR, Ross JD, DeWeerth SP, LaPlaca MC (2005) Mechanical trauma induces immediate changes in neuronal network activity. J Neural Eng 2(4): 148.
[20] Mathieu PS, Loboa EG (2012) Cytoskeletal       and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways. Tissue Eng Pt B-Rev 18(6): 436-444.
[21] Barreto S, Clausen CH, Perrault CM, Fletcher DA, Lacroix D (2013) A multi-structural single cell model of force-induced interactions of cytoskeletal components. Biomaterials 34(26): 6119-6126.
[22] Barreto S, Perrault CM, Lacroix D (2014) Structural finite element analysis to explain cell mechanics variability. J Mech Behav Biomed 38: 219-231.