[1] Olsson M (1991) On the fundamental moving load problem. J Sound Vib 145(2): 299-307.
[2] Frýba L (2013) Vibration of solids and structures under moving loads. Springer Science & Business Media.
[3] Willis R (1849) The effect produced by causing weights to travel over elastic bars. Report of the commissioners appointed to inquire into the application of iron to railway structures.
[4] Stokes SGG (1849) Discussion of a differential equation relating to the breaking of railway bridges. Printed at the Pitt Press by John W. Parker.
[5] Timoshenko SP (1922) CV. On the forced vibrations of bridges. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 43(257): 1018-1019.
[6] Beskou ND, Muho EV (2018) Dynamic response of a finite beam resting on a Winkler foundation to a load moving on its surface with variable speed. Soil Dyn Earthq Eng 109: 222-226
[7] Reismann H (1963) Dynamic response of an elastic plate strip to a moving line load. AIAA J 1(2): 354-360.
[8] Raske TF, Schlack Jr AL (1967) Dynamic response of plates due to moving loads. J Acoust Soc Am 42(3): 625-635.
[9] Shirakawa K (1981) Response of rectangular thick plates to moving single loads. Ingenieur-Archiv 50(3): 165-175.
[10] Gbadeyan JA, Oni ST (1995) Dynamic behaviour of beams and rectangular plates under moving loads. J Sound Vib 182(5): 677-695.
[11] Taheri MR, Ting EC (1989) Dynamic response of plate to moving loads, structural impedance method. Comput Struct 33(6): 1379-1393.
[12] Babagi PN, Neya BN, Dehestani M (2017) Three dimensional solution of thick rectangular simply supported plates under a moving load. Meccanica, 52(15): 3675-3692.
[13] Taheri MR, Ting EC (1990) Dynamic response of plates to moving loads: Finite element method. Comput Struct 34(3), 509-521.
[14] Ghafoori E, Asghari M (2010) Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory. Compos Struct 92(8): 1865-1876.
[15] Zaman M, Taheri MR, Alvappillai A (1991) Dynamic response of a thick plate on viscoelastic foundation to moving loads. Int J Numer Anal Met 15(9): 627-647.
[16] Khosravifard A, Hematiyan MR (2010) A new method for meshless integration in 2D and 3D Galerkin meshfree methods. Eng Anal Bound Elem J 34(1): 30-40.
[17] Rao BN, Rahman S (2000) An efficient meshless method for fracture analysis of cracks. Comput Mech 26(4): 398-408.
[18] Trask N, Maxey M, Hu X (2018) A compatible high-order meshless method for the Stokes equations with applications to suspension flows. J Comput Phys 355: 310-326.
[19] Liu GR (2009) Meshfree methods: moving beyond the finite element method. CRC press.
[20] میکاییلی ص، بهجت ب (1395) تحلیل سهبعدی خمش ورق هدفمند ضخیم با استفاده از روش بدون المان گلرکین در شرایط مرزی مختلف. مکانیک سازهها و شارهها 120-109 :(2)6.
[21] Bui TQ, Khosravifard A, Zhang C, Hematiyan MR, Golub MV (2013) Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method. Eng Struct 47: 90-104.
[22] Hematiyan MR, Khosravifard A, Liu GR (2014) A background decomposition method for domain integration in weak-form meshfree methods. Comput Struct 142: 64-78.
[23] J. N. Reddy, A simple higher-order theory for laminated composite plates, J APPL MECH (1984), 51(4): 745-752.
[24] Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer Science & Business Media.
[25] Golberg MA, Chen CS, Bowman H (1999) Some recent results and proposals for the use of radial basis functions in the BEM. Eng Anal Bound Elem 23(4): 285-296.
[26] Dinis L, Jorge RMN, Belinha J (2011) Static and dynamic analysis of laminated plates based on an unconstrained third order theory and using a radial point interpolator meshless method. Comput Struct 89(19-20): 1771-1784.
[27] Belytschko T, Lu YY, Gu L (1994) Element‐free Galerkin methods. Int J Numer Meth Eng 37(2): 229-256.
[28] Ugural AC (2009) Stresses in beams. plates, and shells. CRC Press.