[1] Rothstein JP (2010) Slip on Superhydrophobic Surfaces. Annu Rev Fluid Mech 42: 89-109.
[2] Cho JHJ, Law BM, Rieutord F (2004) Dipole-dependent slip of newtonian liquids at smooth solid hydrophobic surfaces. Phys Rev Lett 92(16): 166102-1-166102-4.
[3] Ma M, Hill RM (2006) Superhydrophobic surfaces. Curr Opin Colloid IN.11(4) :193-202.
[4] Yong CJ, Bhushan B (2010) Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J Phys Condens Matter 22: 035104-035113.
[5] Nouri NM, Sekhavat S, Bayani Ahangar S, Faal Nazari N (2012) Effect of curing condition on superhydrophobic surface for 7075Al. J Disper Sci Technol 33(6): 771-774
[6] Cheng S, Li-Qin G, Zhong-Ze Gu (2007) Fabrication of super-hydrophobic film with dual-size roughness by silica sphere assembly. Thin Solid Films 515(11): 4686-4690
[7] Chen L, Miao C, Huidi Z, Jianmin C (2009) Preparation of a 2024Al-based super-hydrophobic surface. J Disper Sci Technol 30(1): 48-50.
[8] Chien-Te H, Fang-L Wu, Wei-Yu C (2010) Superhydrophobicity and superoleophobicity from hierarchical silica sphere stacking layers. Mater Che Phys 121(1): 14-21.
[9] Lee C, Choi CH, Kim CJ (2016) Superhydrophobic drag reduction in laminar flows:a critical review. Exp Fluids 57(176): 1-20
[10] Jia O, Blair P, Jonathan PR (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16(12): 4635-4643
[11] Watanabe K, Yanuar K, Udagawa H (1999) Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J Fluid Mech 381: 225-238.
[12] Yu YC, Wei QD (2006) Experimental study on physical mechanism of drag reduction of hydrophobic materials in laminar flow. Chinese Phys Lett 23 :1634.
[13] Daniello RJ, Waterhouse NE, Rothstein JP (2009) Drag reduction in turbulent flows over superhydrophobic surfaces. Phys Fluids 21: 085103-085112.
[14] Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14(3): L10-L12.
[15] Christophe Y, Catherine B, Cécile CB, Pierre J, Lydéric B (2007) Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries. Phys Fluids 19: 123601-1-123610
[16] Zhang J, Tian H, Yao Zh, Hao P, Jian N (2015) Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow. Exp Fluids 56(179).
[17] Geraldi NR, Dodd LE, Xu BB, Wells GG,Wood D, Newton MI, McHal G (2017) Drag reduction properties of superhydrophobic mesh pipes.Surf Topogr Metrol Prop 5(034001).
[18] Zhang S, Ouyang X, Li J, Gao S, Han S, Liu L, Wei H (2015) Underwater drag-reducing effect of superhydrophobic submarine model. Langmuir 31(1): 587-593
[19] امیدوار ا (1391) مقایسه اثر کاهش درگ برای ساختارهای مختلف سطوح فوق آبگریز در رژیم جریان آرام و متلاطم دانشگاه صنعتی شیراز. پایان نامه کارشناسی ارشد.
[20] نجفی ا، نجات ا، چینی ف (1396) ارزیابی پسای هیدروفویل SD۷۰۰۳ با سطح فوق آبگریز به کمک شبیهسازی عددی. مهندسی مکانیک مدرس 134-126 :(2)117.
[21] Min T, Kim J (2004) Effects of hydrophobic surface on skin-friction drag. Phys Fluids 16(7): L55-L58.
[22] راستان م.، سوهانکار ا. (1396) شبیهسازی عددی جریان آشفتۀ کانال نیم موج با سطوح آبدوست و آبگریز. روشهای عددی در مهندسی (2)36.
[23] Youa D, Moin P (2007) Effects of hydrophobic surfaces on the drag and lift of a circular Cylinder. Phys fluid 19: 081701-1-4.
[24] Chang HH, Umberto U, Kim J, Ho CM, Kim CH (2006) Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys Fluids 18: 087105-1-087105-8
[25] Salil G, Peter V, Richard T, Andrea M, Frank van Swol, Pratik S, Jeffrey CB (2005) Effective slip on textured superhydrophobic surfaces. Phys Fluids 17: 051701-1-051701-4.