[1] Rushing TW, Howard IL (2015) Prediction of soil deformation beneath temporary airfield matting systems based on full-scale testing. J Terramech 58(1): 1-9.
[2] Pickett G (1951) Analytical studies of landing mats for forward airfields. Final rep Corps Eng, U.S. Army Waterways Exp Station, MS Thesis.
[3] Harr ME, Rosner JC (1969) A theoretical study of landing mat behavior. Contract Rep. S-69-7, U.S. Army Waterways Exp Station, MS Thesis.
[4] Gartrell CA (2007) Full-scale instrumented testing and analysis of matting systems for airfield parking ramps and taxiways. Tech Rep ERDC/GSL TR-07-33, U.S. Army ERDC.
[5] Gartrell CA, Newman JK, Anderton GL (2009) Performance measurements of pavement matting systems by full-scale testing over differing soil strengths. J Mater Civ Eng 21(10): 12-19.
[6] Gonzales CR, Rushing TW (2010) Development of a new design methodology for structural airfield mats. Int J Pavement Res Tech 3(3): 102-109.
[7] Doyle JD, Howard IL, Gartrell CA, Anderton GL, Newman JK, Berney ES (2014) Full-scale instrumented testing and three-dimensional modeling of airfield matting systems. Int J Geomech 14(2): 78-89.
[8] Garcia L, Howard L (2016) Full-scale instrumented testing of multiple airfield matting systems on soft soil to characterize permanent deformation. Def Tech Inf Cen No. AD1012038.
[9] Korunovic N, Trajanovic M, Stojkovic M (2007) FEA of Tyres Subjected to Static Loading. J Serb Soc Comp Mech 1(1): 87-98.
[10] قریشی ح، ابطحی م (1386) بررسی نظری و تجربی تحلیل جاپای یک تایر رادیال 14R65/185 با طرح رویه به کمک روش اجزای محدود. مجله علوم و تکنولوژی پلیمر 598-589 :(6)20.
[11] Ghoreishy MH (2006) Finite Element Analysis of the Steel-belted Radial Tyre with Tread Pattern under Contact Load. Iran Polym J 18(2): 667-674.
[12] Mines RA, McKown S, Birch RS (2007) Impact of aircraft rubber tyre fragments on aluminium alloy plates: I—Experimental. Int J impact Eng 34(4): 627-646.
[13] Mines RA, McKown S, Birch RS (2007) Impact of aircraft rubber tyre fragments on aluminium alloy plates II—Numerical simulation using LS-DYNA. Int J impact Eng 34(4): 647-667.
[14] Gruber P, Sharp RS, Crocombe AD (2008) Friction and Camber Inflences on the Static Stiffness Properties of a Racing Tyre. P I Mech Eng 27(3): 1965-1976.
[15] Moisescu R, Fratila G (2011) Finite Element Model of Radial Truck Tyre for Analysis of Tyre - Road Contact Stress. Sci Bull Series D 20: 85-94.
[16] Wang W, Yan S, Zhao S (2013) Experimental Verifiation and Finite Element Modeling of Radial Truck Tire under Static Loading. J Reinf Plast Compos 24: 490-498.
[17] Guo H (2014) An investigation into the finite element modelling of an aircraft tyre and wheel assembly. CURVE is the Inst Repo Coventry Uni 12: 28-35.
[18] ملکزاده الف، فرهنگدوست خ، حدیدی مود س (1392) بررسی اثر بارگذاری ضربهای در فرآیند رشد ترک در فولاد فورج EA4T. مجله مکانیک سازهها و شارهها 39-33 :(2)3.
[19] بابایی هـ، جمالی ع، میرزابابای مستوفی ت، اشرف طالش ح (1395) مطالعه تجربی و مدلسازی ریاضی تغییر شکل ورقهای مستطیلی تحت بار ضربهای. مجله مکانیک سازهها و شارهها 152-143 :(1)6.
[20] پاچناری م.ح، مظفری ع، شرعیات م (1395) تحلیل اجزای محدود پاسخ غیرخطی ضربه کم سرعت ورق کامپوزیتی ویسکوالاستیک به کمک تئوری لایه ای. مجله مکانیک سازهها و شارهها 108-97 :(3)6.
[21] قاجار ر، شرعیات م، حسینی ح (1394) تحلیل عددی الاستیسیته غیرخطی ضربه کم سرعت خارج از مرکز ورق ساندویچی مستطیلی با رویه های کامپوزیتی تحت پیش بار دوبعدی. مجله مکانیک سازهها و شارهها 99-87 :(1)5.
[22] Timothy W, Rushing A, Howard L, Brian Jordon J, Allison G (2016) Laboratory Characterization of Fatigue Performance of AM2 Aluminum Airfield Matting. American Society of Civil Engineers, McGraw-Hill, New York.
[23] Markmann G, Verron E (2006) Comparison of Hyperelastic models for rubber-like materials. Rubber Chem Tech 79(5):835-858.
[24] Hosseini A, Sahari B (2010) A review of constitutive models for rubber-like materials. American J Eng Appl Sci 27:886-892.