بررسی تأثیر میدان مغناطیسی بر انتقال حرارت جابجایی ترکیبی نانوسیال درون محفظه K شکل با استفاده از روش شبکه بولتزمن

نوع مقاله : مقاله مستقل

نویسندگان

1 استادیار، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

2 دانش آموخته کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

چکیده

در کار حاضر، برای اولین بار، انتقال حرارت جابجایی ترکیبی نانوسیال درون محفظه K شکل در حضور میدان مغناطیسی با استفاده از روش شبکه بولتزمن شبیه‌سازی شده است. دیواره‌های سمت راست و چپ محفظه در دمای ثابت سرد قرار دارند. دیواره افقی پایینی محفظه در دمای ثابت گرم است. دما روی دیواره افقی بالایی محفظه بصورت خطی تغییر می کند. در شبیه‌سازی صورت گرفته میدان جریان و دما با حل همزمان توابع توزیع جریان و دما محاسبه شده است. تأثیر پارامترهای مختلفی چون عدد رینولدز (200-5۰)، عدد هارتمن (60-0)، نسبت ابعاد محفظه (1-4/۰) و کسر حجمی نانوذرات (۰۵/۰-۰) بر روی انتقال حرارت جابجایی ترکیبی بررسی شده است. نتایج نشان می‌دهد با ثابت ماندن تمامی پارامترها، افزایش نسبت ابعاد محفظه و عدد رینولدز سبب افزایش انتقال حرارت می‌شود. بعلاوه در یک عدد رینولدز و نسبت ابعاد ثابت، افزایش عدد هارتمن باعث کاهش سرعت جریان درون محفظه و انتقال حرارت می‌شود. همچنین تغییر کسر حجمی نانوسیال بر روی انتقال حرارت تأثیرگذار بود.

کلیدواژه‌ها

موضوعات


[1] Kefayati GR (2013) Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field. Theor Comput Fluid Dyn 5: 1-19.
[2] Li Z, Yang M, Zhang Y (2016) Lattice Boltzmann method simulation of 3-D natural convection with double MRT model. Int J Heat Mass Tran 94: 222-238.
[3] Sheikholeslami M, Gorji-Bandpy M, Seyyedi S, Ganji D, Rokni HB, Soleimani S (2013) Application of LBM in simulation of natural convection in a nanofluid filled square cavity with curve boundaries. Powder technol 247: 87-94.
[۴] شهریاری ا (۲۰۱۶) شبیه­سازی عددی انتقال حرارت جابجایی آزاد نانوسیال در محفظه با دیواره­های موجی و توزیع دمای سینوسی به روش شبکه بولتزمن. مجله مهندسی مکانیک مدرس ۱۵۴-۱۴۳: (۹)۱۶.
[۵] حسینی­آباد شاپوری م، سعیدی م ح (۲۰۱۷) مدلسازی جابجایی آزاد نانوسیال اکسید-آلومینیوم آب درون محفظه مربعی منحنی با استفاده از روش شبکه­ای بولتزمن. نشریه مهندسی مکانیک امیرکبیر ۵۸۰-۵۶۷ :(۳)۴۹.
[6] Ashorynejad HR, Mohamad AA, Sheikholeslami M (2013) Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. Int J Therm Sci 64: 240-250.
[7] Ismael MA, Chamkha AJ (2015) Mixed convection in lid-driven trapezoidal cavities with an aiding or opposing side wall. Numer Heat Tran, Part A: Appl 68: 312-335.
[8] Chol S (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME-Pub-Fed 231: 99-106.
[۹] کسایی­پور ع، قاسمی ب، رئیسی ا (۲۰۱۴) اثر میدان مغناطیسی بر انتقال حرارات جابجایی آزاد نانوسیال آب-مس در محفظه T شکل مورب. مجله مهندسی مکانیک مدرس ۱۸۹-۱۷۹ :(۱۲)۱۴.
[10]  Hussein AK, Ashorynejad H, Sivasankaran S, Kolsi L, Shikholeslami M, Adegun I (2016) Modeling of MHD natural convection in a square enclosure having an adiabatic square shaped body using Lattice Boltzmann Method. Alex Eng J 55: 203-214.
[۱۱] رحمتی ا ر، نجار نظامی ا (۲۰۱۷) شبیه­سازی جریان جابجایی طبیعی نانوسیال در یک محفظه شیبدار تحت میدان مغناطیسی به روش شبکه بولتزمن. نشریه مهندسی مکانیک امیرکبیر ۶۰۴-۵۹۵ :(۳)۴۹.
[12] Ghasemi B, Aminossadati S (2010) Mixed convection in a lid-driven triangular enclosure filled with nanofluids. Int Commun Heat Mass Tran 37: 1142-1148.
[13] Nemati H, Farhadi M, Sedighi K, Fattahi E, Darzi A (2010) Lattice Boltzmann simulation of nanofluid in lid-driven cavity. Int Commun Heat Mass Tran 37: 1528-1534.
[14] Rahmannezhad J, Ramezani A, Kalteh M (2013) Numerical investigation of magnetic field effects on mixed convection flow in a nanofluid-filled lid-driven cavity. Int J Eng Tran 26: 1213-1224.
[15] Uddin MN, Farhana A, Alim MA (2015) Numerical study of magneto-hydrodynamic (MHD) mixed convection flow in a lid-driven triangular cavity. J Naval Arch Marine Eng 12: 21-32.
[16] Rahmati AR, Roknabadi AR, Abbaszadeh M (2016) Numerical simulation of mixed convection heat transfer of nanofluid in a double lid-driven cavity using lattice Boltzmann method. Alex Eng J 55: 3101-3114.
[17] Rabbi KM, Saha S, Mojumder S, Rahman M, Saidur R, Ibrahim TA (2016) Numerical investigation of pure mixed convection in a ferrofluid-filled lid-driven cavity for different heater configurations. Alex Eng J 55: 127-139.
[18] Chamkha AJ, Ismael MA (2016) Magnetic field effect on mixed convection in lid-driven trapezoidal cavities filled with a Cu–water nanofluid with an aiding or opposing side wall. J Therm Sci Eng Appl 8:. 310-319.
[19] Mojumder S, Saha S, Rahman MR, Rahman M, Rabbi KM, Ibrahim TA (2017) Numerical study on mixed convection heat transfer in a porous L-shaped cavity. Eng Sci Tech Int J 20: 272-282.
[20] Hatami N, Banari AK, Malekzadeh A, Pouranfard A (2017) The effect of magnetic field on nanofluids heat transfer through a uniformly heated horizontal tube. Physics Letter A 381: 510-515.
[21] Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Tran 50: 2002-2018.
[22] M. Sukop, DT. Thorne, Jr (2006) Lattice Boltzmann Modeling. Springer.
[23] Mohamad AA (2011) Lattice Boltzmann method: fundamentals and engineering applications with computer codes. Springer Science & Business Media.
[24] Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical review 94: 511-525.
[25] Brinkman H (1952) The viscosity of concentrated suspensions and solutions. J Chemical Physics 20: 571-571.
[26] Patel HE, Sundarajan T, Pradeep T, Dasgupta A, Dasgupta N, Das SK (2005) A micro convection model for thermal conductivity of nanofluids. Prama J Phys 65: 863-869.
[27] Santra AK, Chakraborty N (2009) Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates. Int J Therm Sci 48: 391-400.
[28] Sathiyamoorthy M, Chamkha A (2010) Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall (s). Int J Therm Sci 49: 1856-1865.