[1] Leissa AW (1969) Vibration of plates. Technical Report, Ohio State University Columbus.
[2] Mukhopadhyay M (1978) A semi-analytic solution for free vibration of rectangular plates. J Sound Vib 60: 71-85.
[3] Dickinson S, Di Blasio A (1986) On the use of orthogonal polynomials in the Rayleigh Ritz method for the study of the flexural vibration and buckling of isotropic and orthotropic rectangular plates. J Sound Vib 108: 51-62.
[4] Lee H, Lim S (1992) Free vibration of isotropic and orthotropic rectangular plates with partially clamped edges. Appl Acoust 35: 91-104.
[5] Mizusawa T (1986) Natural frequencies of rectangular plates with free edges. J Sound Vib 105: 451-459.
[6] Bardell N (1991) Free vibration analysis of a flat plate using the hierarchical finite element method. J Sound Vib 151: 263-289.
[7] Bhat R, Mundkur G (1993) Vibration of plates using plate characteristic functions obtained by reduction of partial differential equation. J Sound Vib 161: 157-171.
[8] Rajalingham C, Bhat R, Xistris G (1996) Vibration of rectangular plates using plate characteristic functions as shape functions in the Rayleigh–Ritz method. J Sound Vib 193: 497-509.
[9] خورشیدی ک، بخششی ع، قدیریان ح (1395) بررسی تاثیرات محیط حرارتی بر ارتعاشات آزاد ورق مستطیلی از جنس مواد تابعی مدرج دو بعدی مستقر بر بستر الاستیک. مجله علمی پژوهشی مکانیک سازهها و شارهها 147-137 :(3)6.
[10] قدیریان ح، قضاوی م ر، خورشیدی ک (1395) تحلیل ارتعاشات و پایداری ورقهای مرکب چند لایه تحت اثر رطوبت و دما. مجله علمی پژوهشی مکانیک سازهها و شارهها 166-155 :(2)6.
[11] Wang D, Yang Z, Yu Z (2010) Minimum stiffness location of point support for control of fundamental natural frequency of rectangular plate by Rayleigh–Ritz method. J Sound Vib 329: 2792-2808.
[12] Ramu I, Mohanty S (2012) Study on free vibration analysis of rectangular plate structures using finite element method. Procedia Eng 38: 2758-2766.
[13] Senjanovic I, Tomic M, Vladimir N, Hadzic N (2015) An approximate analytical procedure for natural vibration analysis of free rectangular plates. Thin-walled Str 95: 101-114.
[14] Yeh YL, Jang MJ, Wang CC (2006) Analyzing the free vibrations of a plate using finite difference and differential transformation method. Appl Math Comp 178: 493-501.
[15] Mochida Y, Ilanko S (2008) Bounded natural frequencies of completely free rectangular plates. J Sound Vibration 311: 1-8.
[16] Malik M, Bert C W (1998) Three-dimensional elasticity solutions for free vibrations of rectangular plates by the differential quadrature method. Int J Solid Str 35: 299-318.
[17] خورشیدی ک، عنصری نژاد س (1395) تحلیل دقیق ارتعاش آزاد ورقهای قطاعی کوپل شده با لایه پیزوالکتریک با بکارگیری تئوری تغییر شکل برشی مرتبه اول. مجله علمی پژوهشی مکانیک سازهها و شارهها 138-125 :(4)6.
[18] Benamar R, Bennouna M, White R (1993) The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, Part II: fully clamped rectangular isotropic plates. J Sound Vibration 164: 295-316.
[19] Low K, Chai G, Tan G (1997) A comparative study of vibrating loaded plates between the Rayleigh-Ritz and experimental methods. J Sound Vibration 199: 285-297.
[20] Singhatanadgid P, Songkhla AN (2008) An experimental investigation into the use of scaling laws for predicting vibration responses of rectangular thin plates. J Sound Vibration 311: 314-327.
[21] Nieves F, Gascon F, Bayon A (2004) Natural frequencies and mode shapes of flexural vibration of plates: laser-interferometry detection and solutions by Ritz’s method. J Sound Vibration 278: 637-655.
[22] Howard CQ, Kidner MR (2006) Experimental validation of a model for the transmission loss of a plate with an array of lumped masses. Proc. Acoust. Christchurch, New Zealand 169-177.
[23] Crocker M J (207) Handbook of noise and vibration control. John Wiley & Sons.