ارتعاشات آزاد و جابه‌جایی استاتیکی میکرو ورق با لایه‌های پیزوالکتریک با استفاده از نظریه تنش کوپل بهبود یافته

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه شیراز، شیراز

2 استادیار، مهندسی مکانیک، دانشگاه شیراز، شیراز

3 استاد، مهندسی مکانیک، دانشگاه شیراز، شیراز

چکیده

در مطالعه حاضر، مدلسازی میکرو ورق با لایه های پیزوالکتریک بر اساس تئوری کلاسیک ورق‌ها با استفاده از نظریه تنش کوپل بهبود یافته صورت گرفته است. اضافه شدن تنها یک پارامتر به منظور لحاظ کردن اثر اندازه سیستم در نظریه تنش کوپل بهبود یافته یکی از مزیت های این نظریه نسبت به دیگر نظریه‌های غیرکلاسیک مکانیک محیط پیوسته است که استفاده از آن را بسیار آسان تر کرده است و در عین حال می‌تواند مدلسازی دقیق‌تری را در مقایسه با نظریه کلاسیک مکانیک محیط پیوسته از سیستم‌های با ابعاد میکرو به دست دهد. مدل سازی لایه های پیزوالکتریک با استفاده از نظریه پیزوالکتریسیته خطی انجام شده است و با توجه به ضخامت کم لایه های پیزوالکتریک میدان الکتریکی در این لایه ها ثابت فرض شده است. معادله حرکت و شرایط مرزی حاکم بر سیستم به کمک اصل همیلتون بدست آورده شده است. معادله حرکت با روش اجزای محدود حل شده و اثر پارامتر اندازه و لایه های پیزوالکتریک بر ارتعاش آزاد و جابجایی استاتیکی میکرو ورق بررسی شده است.

کلیدواژه‌ها

موضوعات


[1] Elwespoek M, Wiegerink R (2001) Mechanical micro sensors. Springer, Berlin.
[2] Varadan VM, Vinoy KJ, Jose KA (2003) RF MEMS and their applications. Wiley, New York.
[3] Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477-508.
[4] Liu D, He Y, Tang X, Ding H, Hu P, Cao P (2012) Size effects in the torsion of micro- scale copper wires: experiment and analysis. Scr Mater 66(6): 406-409.
[5] Liu D, He Y, Dunstan DJ, Zhang B, Gan Z, Hu P, Ding H (2013) An ominous plasticity in the cyclic torsion of micron scale metallic wires. Phys Rev Lett 110(24): 244301.
[6] Tang C, Alici G (2011) Evaluation of length-scale effects for mechanical behavior of micro-and nanocantilevers II. Experimental verification of deflection models using atomic force microscopy. J Phys D ApplPhys 44(33): 335502.
[7] Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1): 385-414.
[8] Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. ArchRation MechAnal 11(1): 415-448.
[9] Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1): 51-78.
[10] Yang F, Chong ACM, Lam DCC, Tong P(2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10): 2731-2743.
[11] Salamat-talab M, Nateghi A, Torabi J (2012) Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory. Int J Mech Sci 57 :63-73.
[12] Vatankhah R,  Kahrobaiyan MK (2016) Investigation of size-dependency in free-vibration of micro-resonators based on the strain gradient theory.Lat Am J Solids Struct 13.
[13] Akgöz B, Civalek Ö (2014) A new trigonometric beam model for buckling of strain gradient microbeams. Int J Mech Sci 81: 88-94.
[14] Darijani H, Mohammadabadi H (2014) A new deformation beam theory for static and dynamic analysis of microbeams. Int J Mech Sci 89: 31-39.
[15] Vatankhah R, Najafi A,  Salariehb H, Alasty  A (2013) Boundary stabilization of non-classical micro-scale beams. Appl Math Model 37: 8709-8724.
[16] Tsiatas GC (2009) A new Kirchhoff plate model based on a modified couple stress theory. Int J Solids Struct 46: 2757-2764.
[17] Wang KF, Kitamura T, Wang B (2015) Nonlinear pull in instability and free vibration of micro/ nano scale plates with surface energy–A modified couple stress theory model. Int J Mech Sci 99: 288-296.
[18] Asghari M (2012) Geometrically nonlinear micro-plate for formulation based on the modified couple stress theory. Int J Eng Sci 51: 292-309.
[19] Roque CMC, Ferreira AJM, Reddy JN (2013)  Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method. Appl Math Model 37: 4626-4633
 [20] Shaat M, Mahmoud FF, Gao XL, Faheem AF (2014) Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int J Mech Sci 79: 31-37.
[21] Jomehzadeh E, Noori HR, Saidi AR (2011) The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Physica E 43: 877-883.
[22] Wang Y-G, Lin W-H, Liu N (2013) Large amplitude free vibration of size-dependent circular micro plates based on the modified couple stress theory. Int J Mech Sci 71: 51-57.
[23] Thai HT, Choi DH (2013) Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos Struct 95:142–53.
[23] Sumali H, Meissner K, Cudney H.H, (2001) A piezoelectric array for sensing vibration modal coordinates. Sensors and Actuators A 93: 123-131.
[24] Wu T (2003) Modeling and design of a novel cooling device for microelectronics using piezoelectric resonating beams. PhD Thesis Department of Mechanical and Aerospace Engineering, North Carolina State University.
[25] Cortes DH, Datta SK, Mukdadi OM (2010) Elastic guided wave propagation in aperiodic array of multi-layered piezoelectric plates with finite cross- sections. Ultrasonics 50: 347-356.
[26] Casadei F, Dozio L, Ruzzene M, Cunefare KA (2010) Periodic shunted arrays for the control of noise radiation in an enclosure. J Sound Vib 329 3632-3646.
[28] Wang J, Yang J (2000) Higher order theories of piezoelectric plates and applications. Reprinted from Appl Mech Rev 53(4): 87-99.
[29] Batra RC, Vidoli S (2002) Higher order piezoelectric plate theory derived from a three-dimensional variational principle. AIAA J 40(1): 91-104.
[30] Chen JY, Chen HL, Pan E, Heyliger PR (2007) Modal analysis of magneto-electro-elastic plates using the state-vector approach. J Sound Vib 304: 722-734.
 [31] Edery-Azulay L, Abramovich H (2008) Piezo laminated plates—highly accurate solutions based on the extended Kantorovich method. Compos Struct 84: 241-247.
[32] Ebrahimi F, Rastgoo A, Atai AA (2009) A theoretical analysis of smart moderately Thick shear deformable annular functionally graded plate. Eur J Mech A Solids 28: 262-273.
 [33] Collet M, Walter V, Delobelle P (2003) Active damping of a micro-cantilever piezo composite beam. J Sound Vibration 260: 453-476.
[34] Rezazadeh G, Tahmasebi A, Zubstov M (2006) Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage. Microsyst Technol 12: 1163-1170.
[35] Raeisifard H, NikkhahBahrami M, Yousefi-Koma A, RaeisiFard H (2014) Static characterization and pull-in voltage of a micro-switch under both electrostatic and piezoelectric excitations. Eur J Mech A Solids 44: 116e124.
[36] Xiaoa Y, Wanga B, Zhou S (2015) Pull-in voltage analysis of electrostatically actuated MEMS with piezoelectric layers: A size-dependent model. Mech Res Commun 66: 7-14.
 [37] Reddy JN (2007) Theory and analysis of elastic plates and shells. 2nd edn. Taylor& Francis, Philadel-phia.
[38] Reddy JN (2002) Energy principles and variational methods in applied mechanics. John Wiley & Sons, New York.
[39] Reddy JN (2006) An introduction to the finite element method. McGraw Hill, Singapore.
[40] Rao SS (2007) Vibration of continuous systems. John Wiley & Sons, USA.