[1] Reay D, McGlen R, Kew P (2014) Heat pipes: Theory, design and applications. 6nd edn. Elsevier Ltd.
[2] Faghri A (2012) Review and advances in heat pipe science and technology. J Heat Trans-T ASME 134(12): 123001.
[3] Ranjan R, Murthy JY, Garimella SV (2009) Analysis of the wicking and thin-film evaporation characteristics of microstructures. J Heat Trans-T ASME 131(10): 101001.
[4] Weibel JA, Garimella SV, North MT (2010) Characterization of evaporation and boiling from sintered powder wicks fed by capillary action. Int J Heat Mass Tran 53 (19-20): 4204-4215.
[5] Altman DH, Wasniewski JR, North MT, Kim SS, Fisher TS (2011) Development of micro/nano engineered wick-based passive heat spreaders for thermal management of high power electronic devices. Proceedings of the ASME InterPACK Portland.
[6] Ranjan R, Murthy JY, Garimella SV (2011) A microscale model for thin-film evaporation in capillary wick structures. Int J Heat Mass Tran 54 (1-3): 169-179.
[7] Dhavaleswarapu HK, Migliaccio CP, Garimella SV, Murthy JY (2009) Experimental investigation of evaporation from low-contact-angle sessile droplets. Langmuir: 26(2): 880-888.
[8] Nam Y, Sharratt S, Byon C, Kim SJ, Ju YS (2010) Fabrication and characterization of the capillary performance of superhydrophilic Cu micropost arrays. J Microelectromech S 19(3): 581-588.
[9] Cui HH, Lim KM (2009) Pillar array microtraps with negative dielectrophoresis. Langmuir 25(6): 3336.
[10] Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Ryan P (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173): 1235-1239.
[11] Hilden JL, Trumble, KP (2003) Numerical analysis of capillarity in packed spheres: Planar hexagonal-packed spheres. J Colloid Interf Sci 267(2): 463-474.
[12] Saha AA, Mitra SK, Tweedie M, Roy S, McLaughlin J (2009) Experimental and numerical investigation of capillary flow in SU8 and PDMS microchannels with integrated pillars. Microfluid Nanofluid 7: 451-465.
[13] Xiao R, Enright R, Wang EN (2010) Prediction and optimization of liquid propagation in micropillar arrays. Langmuir 26(19): 15070-15075.
[14] صفاری ح، میرزاقیطاقی الف، رحیمی ع (1394) مدلسازی فشار مویینگی میکروسیالات در میکروساختارها با نرم افزار Surface Evolver. مجله علمی پزوهشی دینامیک سازه ها و شاره ها 255-247 :(3)5.
[15] Hong DP, Byon C (2014) Analytic correlation for the capillary pressure of micro-square-pillar arrays. Int J Precis Eng Man 15(12): 2677-2680.
[16] Byon Ch, Kim SJ (2014) Study on the capillary performance of micro-post wicks with non-homogeneous configurations. Int J Heat Mass Tran 68: 415-421.
[17] Ding C, Meinhart CD, MacDonald NC (2010) Surface Modifications of bulk micromachined titanium pillar arrays – A wicking material for thin flat heat pipes. Proceedings of the ASME Micro/Nanoscale Heat and Mass Transfer International Conference 415-419.
[18] Iverson BD, Davis TW, Garimella SV, North MT, Kang SS (2007) Heat and mass transport in heat pipe wick structures. J Thermophys Heat Tr 21(2): 392-404.
[19] Whitaker S (1986) Flow in porous media I: A theoretical derivation of Darcy's law. Transport Porous Med 1(1): 3-25.
[20] Finn R (1999) Capillary surface interfaces. Notices Amer Math Soc 46(7): 770-781.
[21] Cengel YA (2003) Heat transfer a practical approach.
[22] Scharge RW (1953) A theoretical study of interface mass transfer.