مدل‌های ریاضی جدید مبتنی بر رویه تحلیل رگرسیون برای تنظیم بهینه‌ی‌ پارامترهای TMD

نوع مقاله : مقاله مستقل

نویسندگان

1 استادیار گروه مهندسی عمران، دانشگاه زابل، زابل، ایران

2 استادیار گروه مهندسی عمران، دانشگاه صنعتی بیرجند، بیرجند، ایران

چکیده

میراگر جرمی تنظیم‌شده (TMD) به عنوان یکی از استراتژی‌های کنترل ارتعاشات سیستم‌های مکانیکی و سازه‌ای به طور گسترده‌ای استفاده می‌شوند. تنظیم پارامترهای TMD نقش کلیدی در عملکرد آن‌ دارد. در این مقاله مدل‌های ریاضی جدیدی مبتنی بر رویه تحلیل رگرسیون برای تنظیم بهینه پارامترهای TMD در یک سیستم اصلی میرا تحت تحریک شتاب پایه از نوع اغتشاش سفید ارائه شده‌اند. برای این منظور با بکارگیری الگوریتم جستجوی فاخته، یک پایگاه داده از مقادیر بهینه فرکانس و میرایی تنظیم TMD ایجاد و سپس مدل‌هایی مبتنی بر رویه تحلیل رگرسیون جهت تخمین پارامترهای بهینه TMD ارائه شده اند. کارائی مدل‌های ریاضی ارائه شده با چندین مدل صریح ارائه شده توسط مراجع، با استفاده از آماره ضریب اطمینان مقایسه شده است. نتایج نشان می‌دهند که مدل‌های ارائه شده ضمن سادگی، به دلیل داشتن خطای کمتر و همبستگی بیشتر، از دقت بالاتری نسبت به دیگر مدل‌های ریاضی برخوردارند و در مقایسه با الگوریتم‌های بهینه سازی مبتنی بر جستجو از کارایی و سادگی بالاتری برخوردارند و لذا می‌توانند، بدون نیاز به محاسبات وقت گیر، به سهولت در کاربردهای مهندسی استفاده شوند. همچنین نتایج حاصل برای سیستم اصلی در معرض تحریک اغتشاش سفید فیلتر شده نشان می‌دهند که مقادیر پارامترهای بهینه TMD متاثر از فرکانس غالب تحریک نمی‌باشند. در انتها، کارائی مدل‌های ریاضی پیشنهاده شده برای یک سازه در معرض زلزله‌های مختلف نشان داده شده است.

کلیدواژه‌ها

موضوعات


[1] Datta TK (1996 (Control of dynamic response of structures. In: Indo-US symposium on emerging trends in vibration and noise engineering 1: 18-20.
[2] Ormondroyd J, Den Hartog J (1928) The theory of the dynamic vibration absorber. J Appl Mech-T ASME 50(7): 11-22.
[3]  Den Hartog JP )1947) Mechanical vibrations. 3rd edn. McGraw-Hill, New York.
[4] Bishop RED, Welboum DB (1952) The problem of the dynamic vibration absorber. Engineering, London.
[5] Snowdon JC (1959) Steady-state behavior of the dynamic absorber. J Acoust Soc Am 31(8): 1096-103
[6] Falcon KC, Stone BJ, Simcock WD, Andrew C (1967) Optimization of vibration absorbers: A graphical method for use on idealized systems with restricted damping.  J Mech Eng Sci  9(5): 374-81.
[7] Ioi T, Ikeda K (1978) On the dynamic vibration damped absorber of the vibration system. B JSME 21(151): 64-71.
[8] Warburton GB, Ayorinde EO (1980) Optimum absorber parameters for simple systems. Earthq Eng  Struc Dyn 8(3): 197-217
[9] Ayorinde EO, Warburton GB (1980) Minimizing structural vibrations with absorbers. Earthq Eng Struc Dyn 8(3): 219-36
[10] Bapat VA, Kumaraswamy HV (1979) Effect of primary system damping on the optimum design of an untuned viscous dynamic vibration absorber. J Sound Vib 63(4): 469-74.
[11] Thompson AG (1980) Optimizing the un-tuned viscous dynamic vibration absorber with primary system damping: A frequency locus method. J Sound Vib 73(3): 469-72.
[12] Sadek F, Mohraz B, Taylor AW, Chung RM (1997). A method of estimating the parameters of tuned mass dampers for seismic applications. Earthq Eng Struc Dyn 26(6): 617-36.
[13] Warburton GB (1982) Optimum absorber parameters for various combinations of response and excitation parameters. Earthq Eng Struc Dyn 10(3): 381-401.
[14] Marano GC, Greco R, Chiaia B (2010) A comparison between different optimization criteria for tuned mass dampers design. J Sound Vib 329(23) :4880-90.
[15] Tsai HC, Lin GC (1993) Optimum tuned-mass dampers for minimizing steady state response of support-excited and damped systems. Earthq Eng Struc Dyn 22(11): 957-73.
[16] Bakre SV, Jangid RS (2007) Optimal parameters of tuned mass damper for damped main system.  Structu Control Hlth 14(3): 448-70.
[17] Bandivadekar TP, Jangid RS (2013) Optimization of multiple tuned mass dampers for vibration control of system under external excitation. J Vib Control 19(12): 1854-71.
[18] Leung AYT, Zhang H (2009) Particle swarm optimization of tuned mass dampers. Eng Struct 31(3): 715-28.
[19] Salvi J, Rizzi E (2012) A numerical approach towards best tuning of tuned mass dampers In: Proc 25th  Inter Conf noise Vib Eng (ISMA) 17: 2419-2434.
[20] Hadi MN., Arfiadi Y (1998) Optimum design of absorber for MDOF structures. J Struct Eng (ASCE) 124(11): 1272-80.
[21] Singh MP, Singh S, Moreschi LM (2002) Tuned mass dampers for response control of torsional buildings. Earthq Eng Struc Dyn 31(4): 749-69.
[22] Desu NB, Deb SK, Dutta A (2006) Coupled tuned mass dampers for control of coupled vibrations in asymmetric buildings. Structu Control Hlth 13(5): 897-916.
[23] Etedali S, Sohrabi MR, Tavakoli S (2013). An independent robust modal PID control approach for seismic control of buildings. J Civil Eng Urban 3(5): 279-291.
[24] Mohebbi M, Shakeli K, Ghanbarpour Y, Majzoub H (2013) Designing optimal multiple tuned mass dampers using genetic algorithms (GAs) for mitigating the seismic response of structures. J Vib Control 19(4): 605-25.
[25] Leung AYT, Zhang H, Cheng CC, Lee LL (2008) Particle swarm optimization of TMD by non‐stationary base excitation during earthquake. Earthq Eng Struc Dyn 37(9): 1223-46.
[26] Bekdaş G, Nigdeli SM (2011) Estimating optimum parameters of tuned mass dampers using harmony search optimization of Tuned Mass Damper Parameters. Eng Struc 33(9): 2716-23.
[27] Farshidianfar A, Soheili S (2013) Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil–structure interaction. Soil Dyn Earthq Engi 51: 14-22.
[28] Yang XS, Deb S (2009) Cuckoo search via Lévy flights. The world cong on nature and biologically inspired computing (NaBIC)-IEEE pp. 210-214.
[29] Yang XS, Deb S (2013) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1): 169-74.
[30] Civicioglu P, Besdok EA (2013) A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39(4): 315-346.
[31] Yang XS, Deb S (2013) Multi objective cuckoo search for design optimization. Comput  Oper Res 40(6): 1616-24.
[31] Yang XS, Deb S (2010) Engineering optimization by cuckoo search. Int J  Math Model Numer Optim, 1(4): 330-343.
[32]Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1): 17-35.
[33] Gandomi AH, Talatahari S, Yang XS, Deb S (2013) Design optimization of truss structures using cuckoo search algorithm. Struct Des Tall Spec 22(17): 1330-49.
[34] Kaveh A, Bakhshpoori T (2013) Optimum design of steel frames using cuckoo search algorithm with Lévy flights. Struct Des Tall Spec 54(3) :185-8.
[35] Etedali S, Tavakoli S, Sohrabi MR (2016) Design of a decoupled PID controller via MOCS for seismic control of smart structures. Earthq Struct 10(5): 1067-87.
[36] Zamani AA, Tavakoli S, Etedali S (2016) Control of piezoelectric friction dampers in smart base-isolated structures using self-tuning and adaptive fuzzy proportional–derivative controllers. J Intell Mater Syst Struct.
[37] Rajabioun R (2011) Cuckoo Optimization Algorithm.  Appl Soft Comput 11(8): 5508-18
[38] Valian E, Tavakoli S, Mohanna S, Haghi A (2013) Improved cuckoo search for reliability optimization problems. Comput Ind Eng 64(1): 459-68.
[39] Keshtegar B, Miri M (2014) Reliability analysis of corroded pipes using conjugate HL–RF algorithm based on average shear stress yield criterion. Eng Fail Anal 46:104-17.
[40] Kanai K (1957) Semi-empirical formula for the seismic characteristics of the ground. Bull Earthq Res Ins (BERI) 35: 309-325.
[41] Tajimi H (1960) A statistical method of determining the maximum response of a building structure during an earthquake. Proc 2nd World Conf Earthq Eng (2WCEE) 11: 781-798.
[42] محبیم، شاکری ک، مجذوب ح (1391) روشی بر پایه استفاده از الگوریتم ژنتیک برای طراحی بهینه‌ی میراگر جرمی تنظیم‌شده‌ی چندگانه تحت ارتعاش زلزله. فصلنامه علمی پژوهشی مهندسی عمران مدرس 138-71 :(1)12.