[1] Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Devices Lett. EDL 2: 126-129.
[2] Toh KC, Chen XY, Chai JC (2002) Numerical computation of fluid flow and heat transfer in microchannels. Int J Heat Mass Tran 45: 5133-5141.
[3] Peng XF, Peterson GP (1996) Convective heat transfer and flow friction for water flow in microchannels structures. Int J Heat Mass Tran 39: 2599-2608.
[4] Peng XF, Peterson GP (1995) The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels. Int J Heat Mass Tran 38: 755-758.
[5] Tiselj I, Hetsroni G, Mavco B, Mosyak A, Pogrebnyak E, Segal Z (2004) Effect of axial conduction on the heat transfer in microchannels. Int J Heat Mass Tran 47: 2551-2565.
[6] Murshed SMS, Leong KC, Yang C (2008) Thermophysical and electrokinetic properties of nanofluids – a critical review. Appl Therm Eng 28: 2109-2125.
[7] Wen D, Lin G, Vafaei S, Zhang K (2009) Review of nanofluids for heat transfer applications. Particuology 7: 141-150.
[8] Li Y, Zhou J, Tung S, Schneider E, Xi S (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196: 89–101.
[9] Murshed SMS, Leong KC, Yang C (2009) A combined model for the effective thermal conductivity of nanofluids. Appl Therm Eng 29: 2477-2483.
[10] Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Fed 231: 99-103.
[11] Eastman J, Choi U, Li S, Thompson L, Lee S (1996) Enhanced thermal conductivity through the development of nanofluids. MRS Proc Cambridge University Press.
[12] Yu W, France D, Chi S, Routbort J (2007) Review and assessment of nanofluid technology for transportation and other applacations. Argonne National Laboratory (ANL).
[13] Li CH, Peterson GP (2007) The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. J Appl Phys 101: 044312-044312.
[14] Abbasi H, Aghanajafi C (2006) Evaluation of heat transfer augmentation in a nanofluid-cooled microchannel heat sink. J Fusion Energy 25: 187-196.
[15] Anoop KB, Sundararajan T, Das SK (2009) Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Tran 52: 2189-2195.
[16] Teng TP, Hung YH, Teng TC, Moa HE, Hsu HG (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30: 2213-2218.
[17] Moraveji MK, Darabi M, Haddad SMH, Davarnejad R (2011) Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics. Int Commun Heat Mass 38: 1291-1295.
[18] Eastman J, Choi U, Li S, Soyez G, Thampson L, DiMelfi R (1999) Novel thermal properties of nanostructured materials. JMNM 2: 629-634.
[19] Kalteh M, Abbasi A, Saffar-Avval M, Harting J (2011) Eulerian-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel. Int J Heat Fluid Fl 32: 107-116.
[20] Kalteh M, Abbasi A, Saffar-Avval M, Frijns A, Darhuber A, Harting J (2012) Exprimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink. Appl Therm Eng 36: 260-268.
[21] Tokit EM, Mohammed HA, Yusoff MZ (2012) Thermal performance of optimized interrupted microchannel heat sink (IMCHS) using nanofluids. Int Commun Heat Mass 39: 1595-1604.
[22] Seyf HR, Feizbakhshi M (2012) Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks. Int J Therm Sci 58: 168-179.
[23] Tahir S, Mital M (2012) Numerical investigation of laminar nanofluid developing flow and heat transfer in a circular channel. Appl Therm Eng 39: 8-14.
[24] Arani AAA, Amani J (2013) Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2-water nanofluid. Exp Therm Fluid Sci 44: 520-533.
[25] Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Trans-T ASME 121: 280-289.
[26] Chein R, Huang G (2005) Analysis of microchannel heat sink performance using nanofluids. Appl Therm Eng 25: 3104-3114.
[27] Seyf HR, Nikaaein B (2012) Analysis of Brownian motion and particle size effects on the thermal behavior and cooling performance of microchannel heat sinks. Int J Therm Sci 58: 36-44.
[28] Chein R, Chuang J (2007) Experimental microchannel heat sink performance studies using nanofluids. Int J Therm Sci 46: 57-66.
[29] Tsai TH, Chein R (2007) Performance analysis of nanofluid-cooled microchannel heat sinks. Int J Heat Fluid Fl 28: 1013-1026.
[30] Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N (2005) Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Fl 26: 530-546.
[31] Mohammed HA, Gunnasegaran P, Shuaib NH (2010) Heat transfer in rectangular microchannels heat sink using nanofluids. Int Commun Heat Mass 37: 1496-1503.
[32] Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and Mass transfer. 6th edn. Wiley, Hoboken.
[33] Corcione M (2011) Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manage 52: 789-793.
[34] Mohammed HA, Gunnasegaran P, Shuaib NH (2011) Influence of various base nanofluids and substrate materials on heat transfer in trapezoidal microchannel heat sinks. Int Commun Heat Mass 38: 194-201.
[35] FLUENT 6.3 User's Guide, Fluent Inc., 2006-09-20.
[36] Syamlal M, Gidaspow Dimitri (1985) Hydrodynamics of fluidization: Prediction of wall to bed heat transfer coefficients. AIChE J 31: 127-135.
[37] Schiller L, Naumann Z (1935) Verein Deutscher Ingenieure (VDI) 77: 318.
[38] Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Washington D.C., ISBN: 0-07-048740-5
[39] Versteeg HK, Malalasekera W (1995) An introduction to Computational Fluid Dynamics the Finite Volume Method. Second Ed. Longman Scientific & Technical, England.
[40] VanDoormal JP, Raithby GD (1984) Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer Heat Transfer 7: 147-163.
[41] Hetsroni G, Mosyak A, Pogrebnyak E, Yarin LP (2005) Heat transfer in microchannels: comparison of experiments with theory and numerical results. Int J Heat Mass Tran 48: 5580-5601.