پیش‌بینی نیرو و گشتاور در فرآیند نورد داغ ورق با استفاده از شبکه عصبی مصنوعی و روش المان محدود

نوع مقاله : مقاله مستقل

نویسنده

استادیار دانشکده مهندسی مکانیک، دانشگاه صنعتی اراک، اراک

چکیده

در این مطالعه، به بررسی اثرات پارامتر‌های مختلف فرآیند نورد داغ و پیش بینی نیرو و گشتاور نورد با استفاده از مدل‌های شبکه عصبی مصنوعی و المان محدود سه بعدی پرداخته شده است. برای این منظور داده های به‌دست آمده از شبیه سازی المان محدود سه‌بعدی برای آموزش و ارزیابی شبکه، وارد شبکه عصبی می شوند و پس از آموزش و ارزیابی، شبکه قادر خواهد بود که نیرو و گشتاور نورد را پیش بینی کند. نتایج پیش بینی شده از شبیه‌سازی المان محدود برای اعتبار سنجی با نتایج تجربی مقایسه شده است که نتایج به دست آمده از تطابق خوبی برخوردار بوده است. به این ترتیب برای ایجاد مدل‌ شبیه‌سازی المان محدود و مدل شبکه عصبی مصنوعی به ترتیب از دو نرم‌افزار آباکوس و متلب استفاده شده است. الگوریتم و تابع آموزش به‌کار رفته در این مدل به ترتیب الگوریتم پس انتشار خطا و لونبرگ- مارکورت بوده است. در اینجا پارامترهای مختلف و مهم فرآیند نورد داغ شامل دمای اولیه ورق، ضریب انتقال حرارت بین ورق و غلتک‌های‌کاری، کاهش ضخامت ورق، ضخامت اولیه ورق و سرعت نورد مورد بررسی قرار گرفته است. نتایج به دست آمده از شبکه عصبی مصنوعی حاکی از آن می‌باشد که می‌توان با تغییر پارامتر‌های مختلف فرآیند نورد داغ، مقادیر نیرو و گشتاور را در کمترین زمان ممکن با دقت بالا پیش‌بینی نمود.

کلیدواژه‌ها

موضوعات


[1] Orowan E (1943) The calculation of roll pressure in hot and cold flat rolling. Proce Institu Mech Eng 150: 140-167.
[2] Sims RB (1954)  The calculation of roll force and torque in hot rolling mills. Proce Institu Mech Eng 168: 191-200.
[3] Ford H, Alexander JM (1964) Simplified hot rolling calculations. J Inst Metals (92): 397-404.
[4] Hwang SM, Joun M.S (1992) Analysis of hot-strip rolling by a penalty rigid-viscoplastic finite   element method. Int  J Mech  Sci (34): 971-984.
[5] Shangwu X, Rodrigues JMC, Martins PAF (1999)  Three-dimensional simulation of flat rolling through a combined finite element-boundary element approach. Finite Element Anal Des (32): 221-233.
[6] Kwak WJ, Kim YH, Park HD, Lee JH, Hwang SM (2000) FE-based on-line model for the prediction of roll force and roll power in hot strip rolling. ISIJ Int 40:1013-1018.
[7] Duan X, Sheppard T (2002) Three dimensional thermal mechanical coupled simulation during hot rolling of aluminum alloy 3003. Int J Mech  Sci 44: 2155-2172.
[8] Wang X, Peng Y, Xu L, Liu H (2010) A 3-D differential method for solving rolling force of PC hot strip mill. J Iron Steel Res 17: 36-39.
[9] Zhang J, Cui Z (2011) Continuous FEM simulation of multi-pass plate hot rolling suitable for plate shape analysis. J Cent South Univ Technol 18:16-22.
 [10] Dadgar Asl Y, Tajdari M, Moslemi Naeini H, Davoodi B, Azizi Tafti R, Panahizadeh V (2015) Prediction of Required Torque in Cold Roll Forming Process of Channel Section Using Artificial Neural Networks. Modares Mech Eng 15(7): 209-214. (In Persian)
[11] Moharrami R, Soleymani MR (2015) Process parameters selection of cold rolling process for obtaining of certain residual stresses distribution on cylindrical aluminum. Aero Mech J 11(2):1-11. (In Persian)
[12] Portmann NF, Lindhoff D, Sorgel G, Gramckow O (1995) Application of neural networks in rolling mill automation. Iron Steel Eng 72: 33-36.
[13] Chun MS, Biglou J, Lenard JG, Kim JG (1999)  Using neural networks to predict parameters in the hot working of aluminum alloys. J Mat Proc Tech 86: 245-251.
[14] Jeon EC, Kim SK (2000) A study on the texturing of work roll for temper rolling. J Korean Soc Mach Tool Eng 9:7–16.
[15] Yang YY, Linkens DA, Talamantes-Silva J, Howard IC (2003) Roll force and torque prediction using neural network and finite element modeling. ISIJ Int 43:1957-1966.
[16] Yang YY, Linkens DA, Talamantes-Silva J (2004) Roll load prediction-data collection, analysis and neural network modeling. J Mat Proc Tech 152:304-315.
[17] Shahani AR, Setayeshi S, Nodamaie SA, Asadi MA, Rezaie S (2009) Prediction of influence parameters on the hot rolling process using finite element method and neural network. J Mat Proc Tech 209: 1920-1935.
[18] Bagheripoor M, Bisadi H(2013) Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process. Appl Math Model 37: 4593-4607.
[19] Serajzadeh S, Karimi Taheri A, Nejati M, Izadi J, Fattahi M (2002) An investigation on strain in homogeneity in hot strip rolling process. J Mater Process Technol 128: 88-99.
[20] Fletcher JD, Beynon JH (1996) Heat transfer in roll gap in hot strip rolling, Ironmak Steel mak     23: 52-57.
[21] Rezaei Ashtiani HR, Bisadi H, Parsa MH(2011) In homogeneity of temperature distribution through thickness of the aluminum strip during hot rolling. Proce Institu Mech Eng Part C: J Mech Eng Sci  225: 2938-2952.
[22] Hum B, Colquhoun HW, Lenard JG (1996) Measurements of friction during hot rolling of aluminum strips. J Mat Proc Tech 60: 331-338.
[23] Deng J, Gu D, Li X, Yue ZQ (2005) Structural reliability analysis for implicit performance functions using artificial neural network, Struct Saf 27: 25-48.